a2 United States Patent

Smith et al.

US009410712B2

US 9,410,712 B2
Aug. 9,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

DATA MANAGEMENT PROFILE FOR A
FABRIC NETWORK

Applicant: Google Inc., Mountain View, CA (US)

Inventors: Zachary B. Smith, San Francisco, CA
(US); Grant M. Erickson, Sunnyvale,
CA (US); Jay D. Logue, San Jose, CA
(US); Matthew G. Neeley, San Mateo,

CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/588,086

Filed: Dec. 31, 2014

Prior Publication Data
US 2016/0102878 Al Apr. 14,2016

Related U.S. Application Data

Provisional application No. 62/061,593, filed on Oct.
8,2014.

Int. Cl1.

GO5B 21/00 (2006.01)

F24F 11/00 (2006.01)

HO4L 29/08 (2006.01)

GO5B 15/02 (2006.01)

U.S. CL

CPC F24F 11/006 (2013.01); GO5B 15/02

(2013.01); HO4L 67/12 (2013.01)
Field of Classification Search
CPC F24F 11/006; GO5B 15/02; HO4L 67/12
USPC 700/276-276
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
2001/0025349 Al* 9/2001 Sharoodetal. 713/340
2002/0022991 Al* 2/2002 Sharoodetal. 705/14
2004/0049590 Al 3/2004 Collier et al.
2005/0260989 Al 11/2005 Pourtier et al.
2006/0092890 Al 5/2006 Gupta et al.
2007/0061018 Al 3/2007 Callaghan et al.
2007/0218875 Al 9/2007 Calhoun et al.
2007/0220907 Al* 9/2007 Ehlerscccccevevvvnvennene. 62/126
2010/0211224 Al* 82010 Keelingetal. 700/277
2012/0246345 Al 9/2012 Contreras et al.
2013/0136117 Al 5/2013 Schrum, Jr. et al.
2013/0322281 Al 12/2013 Ludlow et al.

(Continued)
OTHER PUBLICATIONS

Phillips et al., Internet Engineering Task Force. Tags for Identifying
Languages. BCP 47. Sep. 2009. http://tools.ietf.org/html/bcp47.

(Continued)

Primary Examiner — Mohammad Ali
Assistant Examiner — Ziaul Karim

(57) ABSTRACT

Method and systems for controlling data remotely that
includes connecting to a remote device within a fabric of
smart devices. The remote device stores data locally. Control-
ling the data includes remotely controlling the data stored in
the remote device from another device connected to the fabric
by transmitting a message to the remote device. Moreover, the
transmitted message includes a profile identifier that causes a
data management entity of the remote device to perform an
indicated data management action. Furthermore, the profile
identifier identifies a data management profile, and the mes-
sage includes a command tag that indicates the data manage-
ment action to be performed.

18 Claims, 28 Drawing Sheets

e 4350

 DATA #
| AAANUAL GVERRIDE

| SUB {HEAT OM /OFF)
FoOSUBSCRIBE AL (o=

\\ P e, .
O
) T
it TE
DATA DATA WPDATE /VIEW
-OCCUPANGY TEMPERATURE P
-TEMPERATURE e FORE e e

DATA

TE SENSING

US 9,410,712 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2014/0001977 Al*
2014/0149270 Al*
2014/0169214 Al 6/2014 Nakajima

2014/0280520 Al 9/2014 Baier et al.

2014/0316585 Al* 10/2014 Boesveldetal. ... 700/278
2014/0359101 Al 12/2014 Dawes et al.

2015/0006633 Al 1/2015 Vandwalle et al.

2015/0023336 Al 1/2015 Ilsar et al.

OTHER PUBLICATIONS

1/2014 Zacharchuk et al. 315/291
5/2014 Lombardetal. 705/34

J. Klensin, Internationalized Domain Names in Applications
(IDNA): Protocol, Aug. 2010. http://tools.ietf.org/html/rfc5891.

USB Implementers’ Forum. Universal Serial Bus (USB): Device
Class Definition for Human Interface Devices (HID). Version 1.11.
Jun. 27, 2001; http://www.usb.org/developers/hidpage/HID1_11.
pdf.

Language Tags in HTML and XML, Sep. 10, 2009, http://www.w3.
org/International/articles/language-tags/Overview.en.php.

Ping, Oracle Manual Pages Section 1M: System Administration
Commands, pp. 1706-1710, 2013 http://www.w3 .org/International/
articles/language-tags/Overview.en.php.

Markus Mathes; “Time Constrained Web Services for Industrial
Automation,” Dissertation from Philipps Universitat—Vlarburg; pp.
1-201, Jul. 9, 2009.

International Search Report and Written Opinion for PCT Applica-
tion No. PCT/US2015/054287 dated Jan. 22, 2016, 14 pgs.

* cited by examiner

U.S. Patent

Aug. 9,2016

20\

PROCESSOR(S)

INTERFACE

18'\

Sheet 1 of 28

12\

US 9,410,712 B2

//‘IO

SENSOR

16\&

NETWORK
INTERFACE

POWER
SUPPLY

US 9,410,712 B2

Sheet 2 of 28

Aug. 9,2016

U.S. Patent

\L@N ¢ 9ld 99¢ 9
aNo13/15IN NOILYDI4NI
S «
LINYILNI e
9 ¥31¥3aH 1004
«
212
/ mo,N E,N QN Now

RO
AN
I

~e0¢

WM\mwm

862 99¢

U.S. Patent Aug. 9,2016 Sheet 3 of 28 US 9,410,712 B2

/90

APPLICATION LAYER 102
PLATFORM LAYER 100
TRANSPORT LAYER 98
NETWORK LAYER 96

DATA LINK LAYER 094
PHYSICAL LAYER 92

FG. 3

U.S. Patent Aug. 9,2016 Sheet 4 of 28 US 9,410,712 B2

1006
100\{1 1016 1008

Sheet 5 of 28 US 9,410,712 B2

U.S. Patent Aug. 9, 2016

1078

1084

1086
WEAVE 1074

FABRIC

/SERVICE™, |
{ END]} SERVICE
‘\ P T~
weave LOINT, WEAVE
FABRIC

FABRIC

r 1
|CONSUMER |
| DEvice 1 1080

1086 ;;'EG 7

1094

1096

1092 FIG. 8

U.S. Patent

109\8\
~ /1100

Aug. 9,2016 Sheet 6 of 28

ULA (UNIQUE LOCAL ADDRESS)
/1162

US 9,410,712 B2

/»1104

GLOBAL ID

SUBNET 1D INTERFACE ID

——40 BITS———16 BITS 64 BITS
N

/

RN
FABRIC ID 1103 gg@g

1105

\

ASSIGN VIRTUAL ADDRESS
10 PERIPHERY NODE

— 1106

MAINTAIN LIST OF
PERIPHERY NODES

— 1108

MONITOR FOR NEIGHBOR
SOLICITATION MESSAGE OF
VIRTUAL ADDRESS
IN LIST

— 1110

ASSIGN VIRTUAL ADDRESS TO
HUB NETWORK INTERFACE
FOR ROUTING NODE

— 1112

RESEND TO NEIGHBOR
SOLICITATION MESSAGE AND
RECEIVE PACKET

— 1114

REWRITE DESTINATION
ADDRESS

— 1116

FORWARD PACKEY

1118

FG. 10

U.S. Patent Aug. 9,2016 Sheet 7 of 28 US 9,410,712 B2

1120

/1122 /1124 /1126

TAG LENGTH VALUE

FIG. 11

U.S. Patent Aug. 9,2016 Sheet 8 of 28 US 9,410,712 B2

GENERAL MESSAGE PROTOCOL

1 T T T T T T YT T T T T T AT T T T

2 BYTESI15. PACKETLENGTH 0} 1130
2 BYTES|{15. . . MESSAGE HEADER = . . 0 [~1132

31| T T T T T T T T T T T T T wﬁ rﬁﬁ34
4 BYTES |- MESSAGE I —

5 T

[T~ r-/A~ T Tt T T T AT T TTT T T T T T T

163 8!

| |

| L1136
8 BYTES — SOURCE NODE D -

I

I —

LHL) o) S & b e o - hOI

[T T T T T T T T T T T T T T T T T T T

163 48]

| 1138
8 BYTES — DESTINATION NODE ID —~

- !

11 I

IS R [Ny SIS [N NN (NI [Sy R R S J——&——h—l
2 BYTESIIS . keym . g -1140

r—

r:j::j::; aieninininietinisie :::;::;"
2 BYTESI5 __PAYLOAD LENGTH o, 0 1142

| - -T-r/|/aTTTrTTTr|aaTTtrTTr|AaaTTtT rTTTrTaT T T o

i ,l--1144
VARIABLE — INTIALIZATION VECTOR -

L J__4__L_J__4__L_J__1__L_J__¢__L_J__$__h_J

P e e e e

l L1146
VARIABLE | — APPLICATION PAYLOAD —!

: - I

Ir_ﬂ__T__F_1__T__F_ﬂ__T__F_ﬂ__T__r_ﬂ__T__r_1|

ly L-1148
VARIABLE | — MESSAGE INTEGRITY CHECK !

|

:L__l__.l.__l. S S TR FERVU TP SN [T T T _l__J.__I___I: 1152

Ir‘ﬂ__T__F T TTr/Aa°TTtTrTTr|aTTrTr ATt T T Tr T 1'

1 L1150
VARIABLE | — PADDING =

iL R PSR WY (A NI [iy (U Ry SRy FE— —— S— J--&--h_J:

T____‘I_____T____T‘_ __|____T|_____T__ _‘I_____'I'____T‘_ __l_____.l_____'___ __I_____T____l_____ -

i L1154
VARIABLE — MESSAGE SIGNATURE —

| 1
h—J——J——L—J——J——h—J——l——L—J——&——L—J——&——h—J

112/; FIG. 12

U.S. Patent Aug. 9,2016 Sheet 9 of 28 US 9,410,712 B2
1132
. 1158 1160
| ./71156 | ./.1162 | I/fl1164
15 VERSION |- | - | S| D| excremion TveE | SIGNATURE TYPE O
——4 BITS——4 BITS—— 4 BITS——4 BITS—
FIG 13
11@
1166 1168
15 KEY TYeE 12| 11 " KEY NUMBER 0
4 BITS 12 BITS

FIG 14

U.S. Patent Aug. 9,2016 Sheet 10 of 28 US 9,410,712 B2

1146
AN
—8 BITS —4—8 BITS —+——16 BITS ———
0 I,/—li{?O /1172 37
VERSION || MSG TYPE EXCHANGE 1D —1174
PROFILE ID — 1176
L k
I PROFILE-SPECIFIC HEADERS 11178
L e o o o e J
APPLICATION PAYLOAD SUB-FIELD -~ 1180

FIG. 15

US 9,410,712 B2

Sheet 11 of 28

Aug. 9,2016

U.S. Patent

POE-

L2

wd
fag

b

| SN Lu0dEH 80

1S v

AAHNTES

ObE-
\»MWQ \.\n.Q:
AHAYES

Y Q pav
EEWRY

: 15

g

ﬁm%

e ERN &
A LAHLTANNGD A0IA30

(.\ :\

SERRE
HAmid 301A30

AN

NOLLGIETS
AUAH

S T

[y

SONRILS

DHINOISIACHA
,:\mm%«

ORANGISIAD Y
v

SRR Mmmmmmf i

[

W

%& BT

)
[
1

w 3
v

87

S .Wa g

R
R

e ﬁ.. 0

I
i

SREIT - oﬁze - — \ AR
| T HOSNAS A 8O0
HOON1 WEv SS300Y HUSNI 3L T m:g;&m
N % ..r 5
m : w m
gie g1¢ Y1z :w\ sit oig 0% 506

-~ 97

lag

U.S. Patent Aug. 9,2016 Sheet 12 of 28 US 9,410,712 B2

1182
OI | I I I | I I I | I I 1 | |15 ,_....,1184
4 BYTES |- PROFILE >
6 g
2 BYTES|15, STATUSCODE 0 |-l86
1BYIE [0 NEXT STATUS 7 |-1188
L O L L L T . R L D e R Y B
VARIABLEL _ ' ADDITIONAL STATUS INFO T ngo
FIG. 17
1184
AN
D R
s, ., (VENORD, ., 31U

FIG. 18

U.S. Patent Aug. 9,2016 Sheet 13 of 28 US 9,410,712 B2

1196
SW_UPDATE | 1108 SW_UPDATE
CLIENT 200 12007 "SERVER
<L[SERVICE DISCOVERY
T IMAGE ANNOUNCE ~1204 T
R N R g T
: IMAGE QUERY 1206 |
i :
IMAGE_QUERY RESPONSE ~1208 i
—
I I
i DOWNLOAD [—1210 o
I I I
i DOWNLOAD NOTIFY ~1212
N T
i NOTIFY RESPONSE ~1214 i
- ———————— e ==l
i UPDATE NOTIFY 1216 i
: ———————————————————————————————— >
i NOTIFY RESPONSE ~1214 i
N I -
- ¢ :
l . l
| |
I e I

U.S. Patent Aug. 9,2016 Sheet 14 of 28 US 9,410,712 B2

1204
\ T T T T T T T
I8E [0 FRAME CONTROL =7 [—1218
O| 1 1 I 1 1 1] 1 I I] 1 I 1
68Es | PRODUCT SPECIFICATION s
1 L L 1 L L L L L 1 1 L L 1 |4.7
L L A R ER R AL A AL A L A A RN I RN
VARUBLE VENDOR SPECIFIC DATA 11222
| e e e e e -I---I.--J--—l---I———l---l——].-—]-—-l-——l—-—
WWSE| | VERSION SPECFIcATIoN . |-1224
"——I——‘|——‘r——T——r——I——‘|——1——T——r——|——‘l——‘|——T_—T“I
VARUBLE LOCALE SPECIFICATION 11226
| o e e o e -|---I.--J--—l---l-——---l——].-—]-—-l-———--
2.48M| | INTEGRITY TYPES SUPPORTED |-1228
25806 | UPDATE SCHEMES SUPPORTED. . [~1230
1218 FIG. 20
N 1232 123 |
VENOOR SPEOFI UG | LODME SECFIION PG| RESERVED 7
—1em—+ iem— e |
1220 FIG. 21
AN
I ! I I ! I ! 1 I I ! 1 ! ! I
0 Il L Il Il L Il VIENQIOR |ID Il L L L L Il 15 F——-}'236
6 L PRONGTD sl
NN T I NG
FIG. 22
1224
1242 1244
0 VERSION LENGTH 7| . VERSION STRING
8 BITS | VARIABLE————
FIG. 23
1226
N Vel | s
0 | LOCALE STRING LENGTH 7| . LOCALE STRING.
— sam | VARIABLE——

FIG. 24

U.S. Patent Aug. 9,2016 Sheet 15 of 28 US 9,410,712 B2
1228
\ | T T T /leSIO T T | T (12?2 T T
O TYPE LST LENGTH 7| INTEGRITY TYPE LIST
8 BITS ! VARIABLE————
FIG. 25
1230
\ I I I || /:.125;4 I I I I /I-125I6 I |
O SCHEME LIST LENGTH 7 [UPDATE SCHEME LIST
—— 8 BITS | VARIABLE——]
1208 FiG. 26
.
VARIABLE | . QUERYSTATUS = . = |—1258
r_-l__'l' _I__'I'____T__I_ B D I R _I__T__I_ 'I']Ts_: 1260
VARIABLE URI —E””
T Ta
VARIABLE 1 INTEGRITY SPECIFICATIONS —1262
I_-_-_‘I'_ _-'-_-_‘l':_]‘_-_-_-:':_-_I'_-_-_-'l:_- '-_-:' - " '- - "_-:_I'_-_ LLL _‘I_-_-_
2 BYTES | 0 UPDATE SCHEME 7 | 0, UPDATE (OPTIONS _ 7 i~1266
12647
FiG. 27
1260
0: o o U:RIL:ENG:TH | o :15 1268
I T N
FIG. 28
1262
[[| I I I
0 INTEGRITY T¥PE 7 1272
| | | | | [[1974

INTEGRITY VALUE

FIG. 29

U.S. Patent Aug. 9,2016 Sheet 16 of 28 US 9,410,712 B2

12?
//1276 /1278 /1280 //1282
' s ' REPORT '
UFEA?EIFRIGRIW bPID#JE GGNDI?IION STATIS RESEIRVEE
2 BITS 38T i BIT 2 BITS
FIG. 30
1400
o
SENDER RECEIVER
1408

FIG. 31

U.S. Patent Aug. 9,2016 Sheet 17 of 28 US 9,410,712 B2

1420
1422 1424
2 BYTES |0 TRANSFER CONTROL 7| 8 RANGE CONTROL 15
2 BYTES [0 FILE DESIGNATOR LENGTH . 15|~1426
2BYTES [0 MAXBLOCK SIZE . l5[~1428
Q 1 I I I I 1 I L] 1 I I I I I 1
| START OFFSET]
16 31 |-1430
4-8 BYTES L L L L
32 39|
0y
?{; LENGTH i—
48 BYTES | ———————————] %%
32 39|
40| L L 1 L | L L | L L 1 L L |4'7
0 | I I | I I I | I I I | I I |15
1434
VARIABLE [— FILE DESIGNATOR —
D R T
10 151
:_ I
1
VARIABLE |— METADATA 11480
| 1
| — —

| 1
| 1
[L Ll el el L L L T T e P ey)

FIG, 32

U.S. Patent Aug. 9,2016 Sheet 18 of 28 US 9,410,712 B2

1422
AN 1450 1452 1454 | (1456 |
~ | ok | RORME | SORME VERSION
|18 ——1 80 ——1 81 ——1 BT 4 8ITS }
FG. 33
1424
1470 172 1474
- - - | Eepom | - - SOFF | DEFLEN
1500 FiG. 34
1BYTE | TRANSFER CONTROL [—1502
28YTES [0 | MAXBLOCK SIZE . 15]~1504
|___I__'[__T__I___I__T__F_T__I__'I'__T__I___I__T__T_j
VARIABLE -- METADATA - 1508
L__l__.l.__J.__I__-I__J.__I.__l__.l__J.__I-__I__.I.__J.__I__-
FG. 35
1520
2BYIES |0 . . STATUSCODE . 15[1522
IBYTE | NEXT STATUS |~1524
r__l__T__T__I___I__T__F_T__I__'I'__T__l___l__'l'__'l'__l
|
VARIABLE - ADD'L INFO —471526

|
b md e e e d e md e bt d e b ek e e e d e e b e e

FIG. 36

U.S. Patent Aug. 9,2016 Sheet 19 of 28 US 9,410,712 B2

1540

1542
0 TAWFERCONOL 7| 8 RANGE CONTROL 15 [~1544
L L L L L L L L L L i D BN

| 0 MAX BLOCK SIZE 15 +—1546

e o) e e e e e e e e e e e i e e e e e e B e e e e e e e e

Q I I I I I I I L] I I I L] I I I}.5
TGI LENGTH (4-8 BYTES) o ,3T-~1548

32IIIIIIIIIIIIIII39
e 4]

FIG. 37

‘ES{}{"}*\

{:} L £] 3 H R%GEELE iﬁs’J?;V’?SEER] 5 B £]

FIG. 38

~
1604

RPN MATA RCNTIICD, VOng .-\N ATt
fEpiare H e DATR RERTIOIED. IRty AT4%
- yﬁ;iﬂ.g Do DATR BTN R VERSEG :&‘13?‘«:’ .

FIG. 39

U.S. Patent Aug. 9,2016 Sheet 20 of 28 US 9,410,712 B2

] PLICATION CODE
Umm MANAGEMENT PRIVITIVES

1614
BME | DATA MANAGER /
SR
| PROTOCOL ENGINE H
7z 1618
EXCHANGE MANAGERA [
PRIMITIVES L
| DXCHANGE LAYER]

fl

\£ MESSABE LAYER PRIMITIVER

1622
i NHL E

DME-Based rsquest{inode 1)

16244 oME-Bideoom | e SNOG

(R \.1628 ME]
DME-Rased. request{0)
1630~ [ME-Bind confirm

1632

FG. 41

*IREMOVE BINDING

U.S. Patent Aug. 9,2016 Sheet 21 of 28 US 9,410,712 B2

1640 1644
| NHL E DME

UME-Bhedroquestily
&dn L . N R PN R -
1642 - EME-Bind.confirm CLEAR DEFAULY BINDING

mﬁﬁ“’éfv‘:%ﬁ SeginPublishing request
18481 DpE-BeginPublishing contime |SET UP PUBLISHING TABLES EYC,
1850~ ,fzg-uso;r Subscription.reuest
MEeReginSubserdmtion corfirm |INSTALL A SUBSCRIPTION

DATA CHANGE| DME-NoWifyrequest 1684
1656 = NGTIFY REQUESTOAULTICAST}
ST DME-Natify.oonfim :

‘\

L NHL 1658 [ouE
DRME-IndFublishing request
16601 time_FraPublishing.conirm | CLEAN UP, CLOSE TRANSACTIONS
T RG.42
1664 1564
NHL DME
UbE-Bind.requestingde [0}
EHE-Bind.confirm SET PEER BINDING
DME-BeginPublishing request
DME-HepinPublishing.confirm [SET LIF PUBLIBHING TABLES BYC,
DME-BeginSubsoription.requedt
. [E-BeginSubseription.cordirm | INSTALL & SUBECRIFTION

DATA CHANGE DIRECRntER fy ran ok
DME-Notify.confirm

DME-EndPublishing requsyt

NOTIFY REQUEST (UNICAST)

OME~EniPublishing.conting

US 9,410,712 B2

Sheet 22 of 28

Aug. 9,2016

U.S. Patent

THYHD

1Y

33

by Ol

x&)

0740~

|

ulu

LHAHOSHENS HANEYIS]

4, I

503

|
|
|
|
|
AHLEON
|
|
|
|
|

TA

AR AN~

ZONYHD YV

iy b

S ARON-3G

g

HARHORENG ¥

P

3
o T
\y

RSN DS H EACE i pr. wnm_ Nwhm\l/.
k¥ i > m
EELEE _. SSUDUERE BOLAIIC~ A
— ~ BT s, FalE))
|1 IANDGSTM TeHSHwl |
| i]
! | NOLLJIMOTENS HSIEY.ST |
- |
AN - m ALY
PRnER NISGNS-TA -

US 9,410,712 B2

Sheet 23 of 28

Aug. 9,2016

U.S. Patent

PRIESS

il

GO A)

U0 AT

Rz
S-v8l
a08L =,
sl aEATAG Yave TIVHEHYS

SIHENEN

BORERPUN AHA- NG fiw_uww

[
it

L o o o v o o o

18303
m

sEmosane Vil

US 9,410,712 B2

Sheet 24 of 28

Aug. 9,2016

U.S. Patent

8y Ol

I
W ﬂffm A

(74 A WO LSIONAY AdlL

pLGL— $74 b YA S A48

&
e
j = 0161~
o’ 043 SOLYIS
sz {h4epd} Qamv;,
f.,.;u . . o b7) .
(A bl S3oR ALY Amding

R
0061~

F7 Eiv0dN s Y3SH0sENS |
2061

e AP O e
)

M g
SLVLS TaNYH e _
1

ALY P e

sstodsaraEndn-Tin WY i
PR eive 3leNinassia
PEEpEING N peq;

wmm T/

HSI A

U.S. Patent

Aug. 9,2016

Sheet 25 of 28

US 9,410,712 B2

2000

YARIABLE

e 1N

2002

2004

VARIABLE

N
2008

2 QYIRS

VARIABLL

2 BYIES

YARIARLE

£ BYTRS

YARIARLE

£ QYIRS

VARIABLE

FIG. 49

L L ORRUST L
FIG. 50

TS T T I

L Temugr
FIG. 1

O 2 T BN

e ORRUST
FIG. 52

T
FIG. 53

T Toamug
FIG. 54

Y

B R

US 9,410,712 B2

Sheet 26 of 28

Aug. 9,2016

U.S. Patent

9¢ Ol

ANZO WO

2108~

TIHSH

RGRERT)

$4

OLoE A

ASNIAEEN W04

HIAY T ddY

2108

mgm\\

R
0%

k__.-

A

) T 40

Y
%mo\ A

EE—

pLoL-

a3l ezl

M A

o

U

</

e

US 9,410,712 B2

Sheet 27 of 28

Aug. 9, 2016

U.S. Patent

F1AvL
NOLLZIISENS

{

vEOE

PR Ay,
o e,

{HANALSITY \
N\, Wam

N o

(epp ¥ ‘ayand
IR CAER A4LLON

m

ot

QLHM

\\.. M

LT

f&ms

",
IR g

/

Y

‘.

RS

HALAON

WA

)
A
RZOE g & 3N
INEHS
wers - X
w.,.M\‘.\mM) r\\‘

US 9,410,712 B2

Sheet 28 of 28

84 Ol

ONMISNIS JLOWY-
440/ NO JYIHT
o BHNEEANEL

7/ d S,
\ R/ /.f
< £y
% VoS
; 5, ¢
K - &\/
V4
¢
‘ ,mww

SV INSEINEE RIS

e 330 W YA

Pl YRS
Yiv(l

AHOLYHIAWA L
ANYE0I00
LER-LE

rd o

Aug. 9,2016

U.S. Patent

P
Anran,
e m

[

Y IENOSENS A |
- ooy

23

(407 WO LY3MI ENSH ans

FORMIAD WMV

GO0 e

US 9,410,712 B2

1
DATA MANAGEMENT PROFILE FOR A
FABRIC NETWORK

BACKGROUND

This disclosure relates to data communication profiles for
systems, devices, methods, and related computer program
products for smart buildings, such as a smart home. This
disclosure relates to a fabric network that couples electronic
devices using one or more network types and a data manage-
ment profile that enables devices to access and manage infor-
mation stored on other devices.

Some homes today are equipped with smart home net-
works to provide automated control of devices, appliances
and systems, such as heating, ventilation, and air conditioning
(“HVAC”) systems, lighting systems, alarm systems, and
home theater and entertainment systems. Smart home net-
works may include various devices that store and manage
their own settings, preferences, and scheduling information
that the smart home network may use to provide automated
control the various devices, appliances and systems in the
home. However, in some scenarios, it may be advantageous
for the various devices in the network to access, store, or
otherwise manage data that is stored on another device.

This section is intended to introduce the reader to various
aspects of art that may be related to various aspects of the
present techniques, which are described and/or claimed
below. This discussion is believed to be helpful in providing
the reader with background information to facilitate a better
understanding of the various aspects of the present disclosure.
Accordingly, it should be understood that these statements are
to be read in this light, and not as admissions of prior art.

SUMMARY

A summary of certain embodiments disclosed herein is set
forth below. It should be understood that these aspects are
presented merely to provide the reader with a brief summary
of these certain embodiments and that these aspects are not
intended to limit the scope of this disclosure. Indeed, this
disclosure may encompass a variety of aspects that may not
be set forth below.

Embodiments of the present disclosure relate to systems
and methods a fabric network that includes one or more
logical networks that enables devices connected to the fabric
to communicate with each other using a list of protocols
and/or profiles known to the devices. The communications
between the devices may follow a typical message format that
enables the devices to understand communications between
the devices regardless of which logical networks the commu-
nicating devices are connected to in the fabric. Within the
message format, a payload of data may be included for the
receiving device to store and/or process. The format and the
contents of the payload may vary according to a header (e.g.,
profile tag) within the payload that indicates a specific profile
(including one or more protocols) and/or a type of message
that is being sent according to the profile to cause a particular
action in the receiving device.

According to some embodiments, two or more devices in a
fabric may communicate using various profiles. For example,
in certain embodiments, a data management profile, a net-
work provisioning profile, or a core profile (including status
reporting protocols) that are available to devices connected to
the fabric. Using the profiles, devices may send or request
information to or from other devices in the fabric in an under-
stood message format.

10

15

20

25

30

35

40

45

55

60

65

2

Various refinements of the features noted above may exist
in relation to various aspects of the present disclosure. Further
features may also be incorporated in these various aspects as
well. These refinements and additional features may exist
individually or in any combination. For instance, various
features discussed below in relation to one or more of the
illustrated embodiments may be incorporated into any of the
above-described aspects of the present disclosure alone or in
any combination. The brief summary presented above is
intended only to familiarize the reader with certain aspects
and contexts of embodiments of the present disclosure with-
out limitation to the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of this disclosure may be better understood
upon reading the following detailed description and upon
reference to the drawings in which:

FIG. 1 is a block diagram of an electronic device having
that may be interconnected with other devices using a fabric
network, in accordance with an embodiment;

FIG. 2 illustrates a block diagram of a home environment in
which the general device of FIG. 1 may communicate with
other devices via the fabric network, in accordance with an
embodiment;

FIG. 3 illustrates a block diagram of an Open Systems
Interconnection (OSI) model that characterizes a communi-
cation system for the home environment of FIG. 2, in accor-
dance with an embodiment;

FIG. 4 illustrates the fabric network having a single logical
network topology, in accordance with an embodiment;

FIG. 5 illustrates the fabric network having a star network
topology, in accordance with an embodiment;

FIG. 6 illustrates the fabric network having an overlapping
networks topology, in accordance with an embodiment;

FIG. 7 illustrates a service communicating with one or
more fabric networks, in accordance with an embodiment;

FIG. 8 illustrates two devices in a fabric network in com-
municative connection, in accordance with an embodiment;

FIG. 9 illustrates a unique local address format (UL A) that
may be used to address devices in a fabric network, in accor-
dance with an embodiment;

FIG. 10 illustrates a process for proxying periphery devices
on a hub network, in accordance with an embodiment;

FIG. 11 illustrates a tag-length-value (TLV) packet that
may be used to transmit data over the fabric network, in
accordance with an embodiment;

FIG. 12 illustrates a general message protocol (GMP) that
may be used to transmit data over the fabric network that may
include the TLV packet of FIG. 11, in accordance with an
embodiment;

FIG. 13 illustrates a message header field of the GMP of
FIG. 12, in accordance with an embodiment;

FIG. 14 illustrates a key identifier field of the GMP of FIG.
12, in accordance with an embodiment;

FIG. 15 illustrates an application payload field of the GMP
of FIG. 12, in accordance with an embodiment;

FIG. 16 illustrates a profile library that includes various
profiles that may be used in the application payload field of
FIG. 15;

FIG. 17 illustrates a status reporting schema that may be
used to update status information in the fabric network, in
accordance with an embodiment;

FIG. 18 illustrates a profile field of the status reporting
schema of FIG. 17, in accordance with an embodiment;

US 9,410,712 B2

3

FIG. 19 illustrates a protocol sequence that may be used to
perform a software update between a client and a server, in
accordance with an embodiment;

FIG. 20 illustrates an image query frame that may be used
in the protocol sequence of FIG. 19, in accordance with an
embodiment;

FIG. 21 illustrates a frame control field of the image query
frame of FIG. 20, in accordance with an embodiment;

FIG. 22 illustrates a product specification field of the image
query frame of FIG. 20, in accordance with an embodiment;

FIG. 23 illustrates a version specification field of the image
query frame of FIG. 20, in accordance with an embodiment;

FIG. 24 illustrates a locale specification field of the image
query frame of FIG. 20, in accordance with an embodiment;

FIG. 25 illustrates an integrity types supported field of the
image query frame of FIG. 20, in accordance with an embodi-
ment;

FIG. 26 illustrates an update schemes supported field of the
image query frame of FIG. 20, in accordance with an embodi-
ment;

FIG. 27 illustrates an image query response frame that may
be used in the protocol sequence of FIG. 19, in accordance
with an embodiment;

FIG. 28 illustrates a uniform resource identifier (URI) field
of'the image query response frame of FIG. 27, in accordance
with an embodiment;

FIG. 29 illustrates a integrity specification field of the
image query response frame of FIG. 27, in accordance with an
embodiment;

FIG. 30 illustrates an update scheme field of the image
query response frame of FIG. 27, in accordance with an
embodiment;

FIG. 31 illustrates a communicative connection between a
sender and a receiver in a bulk data transfer, in accordance
with an embodiment;

FIG. 32 illustrates a SendInit message that may be used to
initiate the communicative connection by the sender of FIG.
31, in accordance with an embodiment;

FIG. 33 illustrates a transfer control field of the SendInit
message of FIG. 32, in accordance with an embodiment;

FIG. 34 illustrates a range control field of the Sendlnit
message of FIG. 33, in accordance with an embodiment;

FIG. 35 illustrates a Send Accept message that may be used
to accept a communicative connection proposed by the Sen-
dInit message of FIG. 32 sent by the sender of FIG. 32, in
accordance with an embodiment;

FIG. 36 illustrates a SendReject message that may be used
to reject a communicative connection proposed by the Sen-
dInit message of FIG. 32 sent by the sender of FIG. 32, in
accordance with an embodiment;

FIG. 37 illustrates a ReceiveAccept message that may be
used to accept a communicative connection proposed by the
receiver of FIG. 32, in accordance with an embodiment;

FIG. 38 illustrates a profile identifier used to identify a
message as pertaining to a specific profile, in accordance with
an embodiment;

FIG. 39 illustrates a data management (WDM) frame for
the WDM profile, in accordance with an embodiment;

FIG. 40 illustrates WDM architecture in a smart device, in
accordance with an embodiment;

FIG. 41 illustrates a binding transaction protocol sequence
created using the WDM profile, in accordance with an
embodiment;

FIG. 42 illustrates a broadcast publish protocol sequence
that may be performed using the WDM profile, in accordance
with an embodiment;

5

10

15

20

25

30

35

40

45

55

60

65

4

FIG. 43 illustrates a peer publish protocol sequence that
may be performed using the WDM profile, in accordance
with an embodiment;

FIG. 44 illustrates a dynamic subscription publish protocol
sequence that may be performed using the WDM profile, in
accordance with an embodiment;

FIG. 45 illustrates a cancel subscription protocol sequence
that may be performed using the WDM profile, in accordance
with an embodiment;

FIG. 46 illustrates a view transaction protocol sequence
that may be performed using the WDM profile, in accordance
with an embodiment;

FIG. 47 illustrates an update transaction protocol sequence
that may be performed using the WDM profile, in accordance
with an embodiment;

FIG. 48 illustrates an example of a conflict resolution that
may be performed using the WDM profile, in accordance
with an embodiment;

FIG. 49 illustrates a view request frame of the WDM pro-
file, in accordance with an embodiment;

FIG. 50 illustrates a view response frame of the WDM
profile, in accordance with an embodiment;

FIG. 51 illustrates a subscribe request frame of the WDM
profile, in accordance with an embodiment;

FIG. 52 illustrates a subscribe response frame of the WDM
profile, in accordance with an embodiment;

FIG. 53 illustrates a cancel subscription request frame of
the WDM profile, in accordance with an embodiment;

FIG. 54 illustrates an update request frame of the WDM
profile, in accordance with an embodiment;

FIG. 55 illustrates a notify frame of the WDM profile, in
accordance with an embodiment;

FIG. 56 illustrates an embodiment of WDM communica-
tions between devices, in accordance with an embodiment;

FIG. 57 illustrates a detailed view of WDM communica-
tions between devices, in accordance with an embodiment;
and

FIG. 58 illustrates a schematic view of an interconnection
of various publishing and subscribing devices in a fabric, in
accordance with an embodiment.

DETAILED DESCRIPTION

One or more specific embodiments of the present disclo-
sure will be described below. These described embodiments
are only examples of the presently disclosed techniques.
Additionally, in an effort to provide a concise description of
these embodiments, features of an actual implementation
may not be described in the specification. It should be appre-
ciated that in the development of any such actual implemen-
tation, as in any engineering or design project, numerous
implementation-specific decisions must be made to achieve
the developers’ specific goals, such as compliance with sys-
tem-related and business-related constraints, which may vary
from one implementation to another. Moreover, it should be
appreciated that such a development effort might be complex
and time consuming, but may nevertheless be a routine under-
taking of design, fabrication, and manufacture for those of
ordinary skill having the benefit of this disclosure.

When introducing elements of various embodiments of the
present disclosure, the articles “a,” “an,” and “the” are
intended to mean that there are one or more of the elements.
The terms “comprising,” “including,” and “having” are
intended to be inclusive and mean that there may be addi-
tional elements other than the listed elements. Additionally, it
should be understood that references to “one embodiment™ or
“an embodiment” of the present disclosure are not intended to

US 9,410,712 B2

5

be interpreted as excluding the existence of additional
embodiments that also incorporate the recited features.

Embodiments of the present disclosure relate generally to
an efficient fabric network that may be used by devices and/or
services communicating with each other in a home environ-
ment. Generally, consumers living in homes may find it useful
to coordinate the operations of various devices within their
home such that of their devices are operated efficiently. For
example, a thermostat device may be used to detect a tem-
perature of ahome and coordinate the activity of other devices
(e.g., lights) based on the detected temperature. In this
example, the thermostat device may detect a temperature that
may indicate that the temperature outside the home corre-
sponds to daylight hours. The thermostat device may then
convey to the light device that there may be daylight available
to the home and that thus the light should turn off. The
thermostat may also view, update, and/or subscribe to data in
other devices such as hazard detectors, radiator control valves
using a data management profile.

In addition to operating these devices efficiently, consum-
ers generally prefer to use user-friendly devices that involve a
minimum amount of set up or initialization. That is, consum-
ers may generally prefer to purchase devices that are fully
operational after performing a few number initialization steps
that may be performed by almost any individual regardless of
age or technical expertise.

With the foregoing in mind, to enable to effectively com-
municate data between each other within the home environ-
ment, the devices may use a fabric network that includes one
or more logical networks to manage communication between
the devices. That is, the efficient fabric network may enable
numerous devices within a home to communicate with each
other using one or more logical networks. The communica-
tion network may support Internet Protocol version 6 (IPv6)
communication such that each connected device may have a
unique local address (ILA). Moreover, to enable each device to
integrate with a home, it may be useful for each device to
communicate within the network using low amounts of
power. Thatis, by enabling devices to communicate using low
power, the devices may be placed anywhere in a home with-
out being coupled to a continuous power source (e.g., battery-
powered).

1. Fabric Introduction

By way of introduction, FIG. 1 illustrates an example of a
general device 10 that may that may communicate with other
like devices within a home environment. In one embodiment,
the device 10 may include one or more sensors 12, a user-
interface component 14, a power supply 16 (e.g., including a
power connection and/or battery), a network interface 18, a
processor 20, and the like. Particular sensors 12, user-inter-
face components 14, and power-supply configurations may
be the same or similar with each devices 10. However, it
should be noted that in some embodiments, each device 10
may include particular sensors 12, user-interface components
14, power-supply configurations, and the like based on a
device type or model.

The sensors 12, in certain embodiments, may detect vari-
ous properties such as acceleration, temperature, humidity,
water, supplied power, proximity, external motion, device
motion, sound signals, ultrasound signals, light signals, fire,
smoke, carbon monoxide, global-positioning-satellite (GPS)
signals, radio-frequency (RF), other electromagnetic signals
or fields, or the like. As such, the sensors 12 may include
temperature sensor(s), humidity sensor(s), hazard-related
sensor(s) or other environmental sensor(s), accelerometer(s),
microphone(s), optical sensors up to and including camera(s)
(e.g., charged coupled-device or video cameras), active or

30

35

40

45

55

6

passive radiation sensors, GPS receiver(s) or radiofrequency
identification detector(s). While FIG. 1 illustrates an embodi-
ment with a single sensor, many embodiments may include
multiple sensors. In some instances, the device 10 may
includes one or more primary sensors and one or more sec-
ondary sensors. Here, the primary sensor(s) may sense data
central to the core operation of the device (e.g., sensing a
temperature in a thermostat or sensing smoke in a smoke
detector), while the secondary sensor(s) may sense other
types of data (e.g., motion, light or sound), which can be used
for energy-efficiency objectives or smart-operation objec-
tives.

One or more user-interface components 14 in the device 10
may receive input from the user and/or present information to
the user. The user-interface component 14 may also include
one or more user-input components that may receive infor-
mation from the user. The received input may be used to
determine a setting. In certain embodiments, the user-input
components may include a mechanical or virtual component
that responds to the user’s motion. For example, the user can
mechanically move a sliding component (e.g., along a verti-
cal or horizontal track) or rotate a rotatable ring (e.g., along a
circular track), the user’s motion along a touchpad may be
detected, or motions/gestures may be detected using a con-
tactless gesture detection sensor (e.g., infrared sensor or cam-
era). Such motions may correspond to a setting adjustment,
which can be determined based on an absolute position of a
user-interface component 104 or based on a displacement of
a user-interface components 104 (e.g., adjusting a setpoint
temperature by 1 degree F. for every 10° rotation of a rotat-
able-ring component). Physically and virtually movable user-
input components can allow a user to set a setting along a
portion of an apparent continuum. Thus, the user may not be
confined to choose between two discrete options (e.g., as
would be the case if up and down buttons were used) but can
quickly and intuitively define a setting along a range of pos-
sible setting values. For example, a magnitude of a movement
of a user-input component may be associated with a magni-
tude of a setting adjustment, such that a user may dramatically
alter a setting with a large movement or finely tune a setting
with s small movement.

The user-interface components 14 may also include one or
more buttons (e.g., up and down buttons), a keypad, a number
pad, a switch, a microphone, and/or a camera (e.g., to detect
gestures). In one embodiment, the user-input component 14
may include a click-and-rotate annular ring component that
may enable the user to interact with the component by rotat-
ing the ring (e.g., to adjust a setting) and/or by clicking the
ring inwards (e.g., to select an adjusted setting or to select an
option). Inanother embodiment, the user-input component 14
may include a camera that may detect gestures (e.g., to indi-
cate that a power or alarm state of a device is to be changed).
In some instances, the device 10 may have one primary input
component, which may be used to set various types of set-
tings. The user-interface components 14 may also be config-
ured to present information to a user via, e.g., a visual display
(e.g., a thin-film-transistor display or organic light-emitting-
diode display) and/or an audio speaker.

The power-supply component 16 may include a power
connection and/or a local battery. For example, the power
connection may connect the device 10 to a power source such
as a line voltage source. In some instances, an AC power
source can be used to repeatedly charge a (e.g., rechargeable)
local battery, such that the battery may be used later to supply
power to the device 10 when the AC power source is not
available. In certain embodiments, the power supply compo-
nent 16 may include intermittent or reduced power connec-

US 9,410,712 B2

7

tions that may be less than that provided via an AC plug in the
home. In certain embodiments, devices with batteries and/or
intermittent or reduced power may be operated as “sleepy
devices” that alternate between an online/awake state and an
offline/sleep state to reduce power consumption.

The network interface 18 may include one or more com-
ponents that enable the device 10 to communicate between
devices using one or more logical networks within the fabric
network. In one embodiment, the network interface 18 may
communicate using an efficient network layer as part of its
Open Systems Interconnection (OSI) model. In certain
embodiments, one component of the network interface 18
may communicate with one logical network (e.g., WiFi) and
another component of the network interface may communi-
cate with another logical network (e.g., 802.15.4). In other
words, the network interface 18 may enable the device 10 to
wirelessly communicate via multiple IPv6 networks. As such,
the network interface 18 may include a wireless card, Ether-
net port, and/or other suitable transceiver connections.

The processor 20 may support one or more of a variety of
different device functionalities. As such, the processor 20
may include one or more processors configured and pro-
grammed to carry out and/or cause to be carried out one or
more of the functionalities described herein. In one embodi-
ment, the processor 20 may include general-purpose proces-
sors carrying out computer code stored in local memory (e.g.,
flash memory, hard drive, random access memory), special-
purpose processors or application-specific integrated circuits,
other types of hardware/firmware/software processing plat-
forms, and/or some combination thereof. Further, the proces-
sor 20 may be implemented as localized versions or counter-
parts of algorithms carried out or governed remotely by
central servers or cloud-based systems, such as by virtue of
running a Java virtual machine (JVM) that executes instruc-
tions provided from a cloud server using Asynchronous Java-
script and XML (AJAX) or similar protocols. By way of
example, the processor 20 may detect when a location (e.g., a
house or room) is occupied, up to and including whether it is
occupied by a specific person or is occupied by a specific
number of people (e.g., relative to one or more thresholds). In
one embodiment, this detection can occur, e.g., by analyzing
microphone signals, detecting user movements (e.g., in front
of a device), detecting openings and closings of doors or
garage doors, detecting wireless signals, detecting an IP
address of a received signal, detecting operation of one or
more devices within a time window, or the like. Moreover, the
processor 20 may include image recognition technology to
identify particular occupants or objects.

In some instances, the processor 20 may predict desirable
settings and/or implement those settings. For example, based
on presence detection, the processor 20 may adjust device
settings to, e.g., conserve power when nobody is home orin a
particular room or to accord with user preferences (e.g., gen-
eral at-home preferences or user-specific preferences). As
another example, based on the detection of a particular per-
son, animal or object (e.g., a child, pet or lost object), the
processor 20 may initiate an audio or visual indicator of
where the person, animal or object is or may initiate an alarm
or security feature if an unrecognized person is detected
under certain conditions (e.g., at night or when lights are off).

In some instances, devices may interact with each other
such that events detected by a first device influences actions of
a second device using one or more common profiles between
the devices. For example, a first device can detect that a user
has pulled into a garage (e.g., by detecting motion in the
garage, detecting a change in light in the garage or detecting
opening of the garage door). The first device can transmit this

20

40

45

8

information to a second device via the fabric network, such
that the second device can, e.g., adjust a home temperature
setting, a light setting, a music setting, and/or a security-alarm
setting. As another example, a first device can detect a user
approaching a front door (e.g., by detecting motion or sudden
light pattern changes). The first device may cause a general
audio or visual signal to be presented (e.g., such as sounding
of a doorbell) or cause a location-specific audio or visual
signal to be presented (e.g., to announce the visitor’s presence
within a room that a user is occupying).

With the foregoing in mind, FIG. 2 illustrates a block
diagram of a home environment 30 in which the device 10 of
FIG. 1 may communicate with other devices via the fabric
network. The depicted home environment 30 may include a
structure 32 such as a house, office building, garage, or
mobile home. It will be appreciated that devices can also be
integrated into a home environment that does not include an
entire structure 32, such as an apartment, condominium,
office space, or the like. Further, the home environment 30
may control and/or be coupled to devices outside of the actual
structure 32. Indeed, several devices in the home environment
30 need not physically be within the structure 32 at all. For
example, a device controlling a pool heater 34 or irrigation
system 36 may be located outside of the structure 32.

The depicted structure 32 includes multiple rooms 38,
separated at least partly from each other via walls 40. The
walls 40 can include interior walls or exterior walls. Each
room 38 can further include a floor 42 and a ceiling 44.
Devices can be mounted on, integrated with and/or supported
by the wall 40, the floor 42, or the ceiling 44.

The home environment 30 may include multiple devices,
including intelligent, multi-sensing, network-connected
devices that may integrate seamlessly with each other and/or
with cloud-based server systems to provide any of a variety of
useful home objectives. One, more or each of the devices
illustrated in the home environment 30 may include one or
more sensors 12, a user interface 14, a power supply 16, a
network interface 18, a processor 20 and the like.

Example devices 10 may include a network-connected
thermostat 46 that may detect ambient climate characteristics
(e.g., temperature and/or humidity) and control a heating,
ventilation and air-conditioning (HVAC) system 48. Another
example device 10 may include a hazard detection unit 50 that
can detect the presence of a hazardous substance and/or a
hazardous condition in the home environment 30 (e.g.,
smoke, fire, or carbon monoxide). Additionally, entryway
interface devices 52, which can be termed a “smart doorbell”,
can detect a person’s approach to or departure from a loca-
tion, control audible functionality, announce a person’s
approach or departure via audio or visual means, or control
settings on a security system (e.g., to activate or deactivate the
security system).

In certain embodiments, the device 10 may include a light
switch 54 that may detect ambient lighting conditions, detect
room-occupancy states, and control a power and/or dim state
of'one or more lights. In some instances, the light switches 54
may control a power state or speed of a fan, such as a ceiling
fan.

Additionally, wall plug interfaces 56 may detect occu-
pancy of a room or enclosure and control supply of power to
one or more wall plugs (e.g., such that power is not supplied
to the plug if nobody is at home). The device 10 within the
home environment 30 may further include an appliance 58,
such as refrigerators, stoves and/or ovens, televisions, wash-
ers, dryers, lights (inside and/or outside the structure 32),
stereos, intercom systems, garage-door openers, floor fans,
ceiling fans, whole-house fans, wall air conditioners, pool

US 9,410,712 B2

9

heaters 34, irrigation systems 36, security systems, and so
forth. While descriptions of FIG. 2 may identify specific
sensors and functionalities associated with specific devices, it
will be appreciated that any of a variety of sensors and func-
tionalities (such as those described throughout the specifica-
tion) may be integrated into the device 10.

In addition to containing processing and sensing capabili-
ties, each of the example devices described above may be
capable of data communications and information sharing
with any other device, as well as to any cloud server or any
other device that is network-connected anywhere in the
world. In one embodiment, the devices 10 may send and
receive communications via a fabric network discussed
below. In one embodiment, fabric may enable the devices 10
to communicate with each other via one or more logical
networks. As such, certain devices may serve as wireless
repeaters and/or may function as bridges between devices,
services, and/or logical networks in the home environment
that may not be directly connected (i.e., one hop) to each
other.

In one embodiment, a wireless router 60 may further com-
municate with the devices 10 in the home environment 30 via
one or more logical networks (e.g., WiFi). The wireless router
60 may then communicate with the Internet 62 or other net-
work such that each device 10 may communicate with a
remote service or a cloud-computing system 64 through the
Internet 62. The cloud-computing system 64 may be associ-
ated with a manufacturer, support entity or service provider
associated with a particular device 10. As such, in one
embodiment, a user may contact customer support using a
device itself rather than using some other communication
means such as a telephone or Internet-connected computer.
Further, software updates can be automatically sent from the
cloud-computing system 64 or devices in the home environ-
ment 30 to other devices in the fabric (e.g., when available,
when purchased, when requested, or at routine intervals).

By virtue of network connectivity, one or more of the
devices 10 may further allow a user to interact with the device
even if the user is not proximate to the device. For example, a
user may communicate with a device using a computer (e.g.,
a desktop computer, laptop computer, or tablet) or other por-
table electronic device (e.g., a smartphone) 66. A webpage or
application may receive communications from the user and
control the device 10 based on the received communications.
Moreover, the webpage or application may present informa-
tion about the device’s operation to the user. For example, the
user can view a current setpoint temperature for a device and
adjust it using a computer that may be connected to the
Internet 62. In this example, the thermostat 46 may receive the
current setpoint temperature view request via the fabric net-
work via one or more underlying logical networks.

In certain embodiments, the home environment 30 may
also include a variety of non-communicating legacy appli-
ances 68, such as old conventional washer/dryers, refrigera-
tors, and the like which can be controlled, albeit coarsely
(ON/OFF), by virtue of the wall plug interfaces 56. The home
environment 30 may further include a variety of partially
communicating legacy appliances 70, such as infra-red (IR)
controlled wall air conditioners or other IR-controlled
devices, which can be controlled by IR signals provided by
the hazard detection units 50 or the light switches 54.

As mentioned above, each of the example devices 10
described above may form a portion of a fabric network.
Generally, the fabric network may be part of an Open Systems
Interconnection (OSI) model 90 as depicted in FIG. 4. The
OSI model 90 illustrates functions of a communication sys-
tem with respect to abstraction layers. That is, the OSI model

10

15

20

25

30

35

40

45

50

55

60

65

10

may specify a networking framework or how communica-
tions between devices may be implemented. In one embodi-
ment, the OSI model may include six layers: a physical layer
92, a data link layer 94, a network layer 96, a transport layer
98, a platform layer 100, and an application layer 102. Gen-
erally, each layer in the OSI model 90 may serve the layer
above it and may be served by the layer below it.

Keeping this in mind, the physical layer 92 may provide
hardware specifications for devices that may communicate
with each other. As such, the physical layer 92 may establish
how devices may connect to each other, assist in managing
how communication resources may be shared between
devices, and the like.

The data link layer 94 may specify how data may be trans-
ferred between devices. Generally, the data link layer 94 may
provide a way in which data packets being transmitted may be
encoded and decoded into bits as part of a transmission pro-
tocol.

The network layer 96 may specify how the data being
transferred to a destination node is routed. The network layer
96 may also provide a security protocol that may maintain the
integrity of the data being transferred. The efficient network
layer discussed above corresponds to the network layer 96. In
certain embodiments, the network layer 96 may be com-
pletely independent of the platform layer 100 and include any
suitable IPv6 network type (e.g., WiFi, Ethernet, HomePlug,
802.15.4, etc).

The transport layer 98 may specify a transparent transfer of
the data from a source node to a destination node. The trans-
port layer 98 may also control how the transparent transfer of
the data remains reliable. As such, the transport layer 98 may
be used to verify that data packets intended to transfer to the
destination node indeed reached the destination node.
Example protocols that may be employed in the transport
layer 98 may include Transmission Control Protocol (TCP)
and User Datagram Protocol (UDP).

The platform layer 100 includes the fabric network and
establishes connections between devices according to the
protocol specified within the transport layer 98 and may be
agnostic of the network type used in the network layer 96. The
platform layer 100 may also translate the data packets into a
form that the application layer 102 may use. The application
layer 102 may support a software application that may
directly interface with the user. As such, the application layer
102 may implement protocols defined by the software appli-
cation. For example, the software application may provide
serves such as file transfers, electronic mail, and the like.

II. Fabric Device Interconnection

As discussed above, a fabric may be implemented using
one or more suitable communications protocols, such as IPv6
protocols. In fact, the fabric may be partially or completely
agnostic to the underlying technologies (e.g., network types
or communication protocols) used to implement the fabric.
Within the one or more communications protocols, the fabric
may be implemented using one or more network types used to
communicatively couple electrical devices using wireless or
wired connections. For example, certain embodiments of the
fabric may include Ethernet, WiFi, 802.15.4, ZigBee,
ISA100.11a, WirelessHART, MiWi™ power-line networks,
and/or other suitable network types. Within the fabric devices
(e.g., nodes) can exchange packets of information with other
devices (e.g., nodes) in the fabric, either directly or via inter-
mediary nodes, such as intelligent thermostats, acting as IP
routers. These nodes may include manufacturer devices (e.g.,
thermostats and smoke detectors) and/or customer devices
(e.g., phones, tablets, computers, etc.). Additionally, some
devices may be “always on” and continuously powered using

US 9,410,712 B2

11

electrical connections. Other devices may have partially
reduced power usage (e.g., medium duty cycle) using a
reduced/intermittent power connection, such as a thermostat
or doorbell power connection. Finally, some devices may
have a short duty cycle and run solely on battery power. In
other words, in certain embodiments, the fabric may include
heterogeneous devices that may be connected to one or more
sub-networks according to connection type and/or desired
power usage. FIGS. 4-6 illustrate three embodiments that
may be used to connect electrical devices via one or more
sub-networks in the fabric.

A. Single Network Topology

FIG. 4 illustrates an embodiment of the fabric 1000 having
a single network topology. As illustrated, the fabric 1000
includes a single logical network 1002. The network 1002
could include Ethernet, WiFi, 802.15.4, power-line networks,
and/or other suitable network types in the IPv6 protocols. In
fact, in some embodiments where the network 1002 includes
a WiFi or Ethernet network, the network 1002 may span
multiple WiFi and/or Ethernet segments that are bridged at a
link layer.

The network 1002 includes one or more nodes 1004, 1006,
1008,1010,1012, 1014, and 1016, referred to collectively as
1004-1016. Although the illustrated network 1002 includes
seven nodes, certain embodiments of the network 1002 may
include one or more nodes interconnected using the network
1002. Moreover, if the network 1002 is a WiFi network, each
of'the nodes 1004-1016 may be interconnected using the node
1016 (e.g., WiFi router) and/or paired with other nodes using
WiFi Direct (i.e., WiFi P2P).

B. Star Network Topology

FIG. 5 illustrates an alternative embodiment of fabric 1000
as a fabric 1018 having a star network topology. The fabric
1018 includes a hub network 1020 that joins together two
periphery networks 1022 and 1024. The hub network 1020
may include a home network, such as WiFi/Ethernet network
or power line network. The periphery networks 1022 and
1024 may additional network connection types different of
different types than the hub network 1020. For example, in
some embodiments, the hub network 1020 may be a WiFi/
Ethernet network, the periphery network 1022 may include
an 802.15.4 network, and the periphery network 1024 may
include a power line network, a ZigBee® network, a
ISA100.11a network, a WirelessHART, network, or a
MiWi™ network. Moreover, although the illustrated embodi-
ment of the fabric 1018 includes three networks, certain
embodiments of the fabric 1018 may include any number of
networks, such as 2, 3, 4, 5, or more networks. In fact, some
embodiments of the fabric 1018 include multiple periphery
networks of the same type.

Although the illustrated fabric 1018 includes fourteen
nodes, each referred to individually by reference numbers
1024-1052, respectively, it should be understood that the
fabric 1018 may include any number of nodes. Communica-
tion within each network 1020, 1022, or 1024, may occur
directly between devices and/or through an access point, such
as node 1042 in a WiFi/Ethernet network. Communications
between periphery network 1022 and 1024 passes through the
hub network 1020 using inter-network routing nodes. For
example, in the illustrated embodiment, nodes 1034 and 1036
are be connected to the periphery network 1022 using a first
network connection type (e.g., 802.15.4) and to the hub net-
work 1020 using a second network connection type (e.g.,
WiF1i) while the node 1044 is connected to the hub network
1020 using the second network connection type and to the
periphery network 1024 using a third network connection
type (e.g., power line). For example, a message sent from

30

40

45

50

55

12

node 1026 to node 1052 may pass through nodes 1028, 1030,
1032, 1036, 1042, 1044, 1048, and 1050 in transit to node
1052.

C. Overlapping Networks Topology

FIG. 6 illustrates an alternative embodiment of the fabric
1000 as a fabric 1054 having an overlapping networks topol-
ogy. The fabric 1054 includes networks 1056 and 1058. As
illustrated, each of the nodes 1062, 1064, 1066, 1068, 1070,
and 1072 may be connected to each of the networks. In other
embodiments, the node 1072 may include an access point for
an Ethernet/ WiFi network rather than an end point and may
not be present on either the network 1056 or network 1058,
whichever is not the Ethernet/WiFi network. Accordingly, a
communication from node 1062 to node 1068 may be passed
through network 1056, network 1058, or some combination
thereof. In the illustrated embodiment, each node can com-
municate with any other node via any network using any
network desired. Accordingly, unlike the star network topol-
ogy of FIG. 5, the overlapping networks topology may com-
municate directly between nodes via any network without
using inter-network routing.

D. Fabric Network Connection to Services

In addition to communications between devices within the
home, a fabric (e.g., fabric 1000) may include services that
may be located physically near other devices in the fabric or
physically remote from such devices. The fabric connects to
these services through one or more service end points. FIG. 7
illustrates an embodiment of a service 1074 communicating
with fabrics 1076, 1078, and 1080. The service 1074 may
include various services that may be used by devices in fab-
rics 1076, 1078, and/or 1080. For example, in some embodi-
ments, the service 1074 may be a time of day service that
supplies a time of day to devices, a weather service to provide
various weather data (e.g., outside temperature, sunset, wind
information, weather forecast, etc.), an echo service that
“pings” each device, data management services, device man-
agement services, and/or other suitable services. As illus-
trated, the service 1074 may include a server 1082 (e.g., web
server) that stores/accesses relevant data and passes the infor-
mation through a service end point 1084 to one or more end
points 1086 in a fabric, such as fabric 1076. Although the
illustrated embodiment only includes three fabrics with a
single server 1082, it should be appreciated that the service
1074 may connect to any number of fabrics and may include
servers in addition to the server 1082 and/or connections to
additional services.

In certain embodiments, the service 1074 may also connect
to a consumer device 1088, such as a phone, tablet, and/or
computer. The consumer device 1088 may be used to connect
to the service 1074 via a fabric, such as fabric 1076, an
Internet connection, and/or some other suitable connection
method. The consumer device 1088 may be used to access
data from one or more end points (e.g., electronic devices) in
a fabric either directly through the fabric or via the service
1074. In other words, using the service 1074, the consumer
device 1088 may be used to access/manage devices in a fabric
remotely from the fabric.

E. Communication Between Devices in a Fabric

As discussed above, each electronic device or node may
communicate with any other node in the fabric, either directly
or indirectly depending upon fabric topology and network
connection types. Additionally, some devices (e.g., remote
devices) may communicate through a service to communi-
cate with other devices in the fabric. FIG. 8 illustrates an
embodiment of a communication 1090 between two devices
1092 and 1094. The communication 1090 may span one or
more networks either directly or indirectly through additional

US 9,410,712 B2

13

devices and/or services, as described above. Additionally, the
communication 1090 may occur over an appropriate commu-
nication protocol, such as IPv6, using one or more transport
protocols. For example, in some embodiments the communi-
cation 1090 may include using the transmission control pro-
tocol (TCP) and/or the user datagram protocol (UDP). In
some embodiments, the device 1092 may transmit a first
signal 1096 to the device 1094 using a connectionless proto-
col (e.g., UDP). In certain embodiments, the device 1092 may
communicate with the device 1094 using a connection-ori-
ented protocol (e.g., TCP). Although the illustrated commu-
nication 1090 is depicted as a bi-directional connection, in
some embodiments, the communication 1090 may be a uni-
directional broadcast.

i. Unique Local Address

As discussed above, data transmitted within a fabric
received by a node may be redirected or passed through the
node to another node depending on the desired target for the
communication. In some embodiments, the transmission of
the data may be intended to be broadcast to all devices. In
such embodiments, the data may be retransmitted without
further processing to determine whether the data should be
passed along to another node. However, some data may be
directed to a specific endpoint. To enable addressed messages
to be transmitted to desired endpoints, nodes may be assigned
identification information.

Each node may be assigned a set of link-local addresses
(LLA), one assigned to each network interface. These LLLAs
may be used to communicate with other nodes on the same
network. Additionally, the LLLAs may be used for various
communication procedures, such as IPv6 Neighbor Discov-
ery Protocol. In addition to LLAs, each node is assigned a
unique local address (ULA).

FIG. 9 illustrates an embodiment of a unique local address
(ULA) 1098 that may be used to address each node in the
fabric. In certain embodiments, the ULA 1098 may be for-
matted as an [Pv6 address format containing 128 bits divided
into a global ID 1100, a subnet ID 1102, and an interface ID
1104. The global ID 1100 includes 40 bits and the subnet ID
1102 includes 16 bits. The global ID 1100 and subnet ID 1102
together form a fabric ID 1103 for the fabric.

The fabric ID 1103 is a unique 64-bit identifier used to
identify a fabric. The fabric ID 1103 may be generated at
creation of the associated fabric using a pseudo-random algo-
rithm. For example, the pseudo-random algorithm may 1)
obtain the current time of day in 64-bit NTP format, 2) obtain
the interface ID 1104 for the device, 3) concatenate the time
of day with the interface ID 1104 to create a key, 4) compute
and SHA-1 digest on the key resulting in 160 bits, 5) use the
least significant 40 bits as the global ID 1100, and 6) concat-
enate the UL A and set the least significant bit to 1 to create the
fabric ID 1103. In certain embodiments, once the fabric 1D
1103 is created with the fabric, the fabric ID 1103 remains
until the fabric is dissolved.

The global 1D 1100 identifies the fabric to which the node
belongs. The subnet ID 1102 identifies logical networks
within the fabric. The subnet ID 1102 may be assigned mono-
tonically starting at one with the addition of each new logical
network to the fabric. For example, a WiFi network may be
identified with a hex value of 0x01, and a later connected
802.15.4 network may be identified with a hex value of 0x02
continuing on incrementally upon the connection of each new
network to the fabric.

Finally, the ULA 1098 includes an interface ID 1104 that
includes 64 bits. The interface ID 1104 may be assigned using
a globally-unique 64-bit identifier according to the IEEE
EUI-64 standard. For example, devices with IEEE 802 net-

15

40

45

14

work interfaces may derive the interface ID 1104 using a
burned-in MAC address for the devices “primary interface.”
In some embodiments, the designation of which interface is
the primary interface may be determined arbitrarily. In other
embodiments, an interface type (e.g., WiFi) may be deemed
the primary interface, when present. If the MAC address for
the primary interface of a device is 48 bits rather than 64-bit,
the 48-bit MAC address may be converted to a EUI-64 value
via encapsulation (e.g., organizationally unique identifier
encapsulating). In consumer devices (e.g., phones or comput-
ers), the interface ID 1104 may be assigned by the consumer
devices’ local operating systems.

ii. Routing Transmissions Between Logical Networks

As discussed above in relation to a star network topology,
inter-network routing may occur in communication between
two devices across logical networks. In some embodiments,
inter-network routing is based on the subnet ID 1102. Each
inter-networking node (e.g., node 1034 of FIG. 5) may main-
tain a list of other routing nodes (e.g., node B 14 of FIG. 5) on
the hub network 1020 and their respective attached periphery
networks (e.g., periphery network 1024 of FIG. 5). When a
packet arrives addressed to a node other than the routing node
itself, the destination address (e.g., address for node 1052 of
FIG. 5) is compared to the list of network prefixes and a
routing node (e.g., node 1044) is selected that is attached to
the desired network (e.g., periphery network 1024). The
packet is then forwarded to the selected routing node. If
multiple nodes (e.g., 1034 and 1036) are attached to the same
periphery network, routing nodes are selected in an alternat-
ing fashion.

Additionally, inter-network routing nodes may regularly
transmit Neighbor Discovery Protocol (NDP) router adver-
tisement messages on the hub network to alert consumer
devices to the existence of the hub network and allow them to
acquire the subnet prefix. The router advertisements may
include one or more route information options to assist in
routing information in the fabric. For example, these route
information options may inform consumer devices of the
existence of the periphery networks and how to route packets
the periphery networks.

In addition to, or in place of route information options,
routing nodes may act as proxies to provide a connection
between consumer devices and devices in periphery net-
works, such as the process 1105 as illustrated in FIG. 10. As
illustrated, the process 1105 includes each periphery network
device being assigned a virtual address on the hub network by
combining the subnet ID 1102 with the interface ID 1104 for
the device on the periphery network (block 1106). To proxy
using the virtual addresses, routing nodes maintain a list of all
periphery nodes in the fabric that are directly reachable via
one of its interfaces (block 1108). The routing nodes listen on
the hub network for neighbor solicitation messages request-
ing the link address of a periphery node using its virtual
address (block 1110). Upon receiving such a message, the
routing node attempts to assign the virtual address to its hub
interface after a period of time (block 1112). As part of the
assignment, the routing node performs duplicate address
detection so as to block proxying of the virtual address by
more than one routing node. After the assignment, the routing
node responds to the neighbor solicitation message and
receives the packet (block 1114). Upon receiving the packet,
the routing node rewrites the destination address to be the real
address of the periphery node (block 1116) and forwards the
message to the appropriate interface (block 1118).

iii. Consumer Devices Connecting to a Fabric

To join a fabric, a consumer device may discover an
address of a node already in the fabric that the consumer

US 9,410,712 B2

15

device wants to join. Additionally, if the consumer device has
been disconnected from a fabric for an extended period of
time may need to rediscover nodes on the network if the fabric
topology/layout has changed. To aid in discovery/rediscov-
ery, fabric devices on the hub network may publish Domain
Name System-Service Discovery (DNS-SD) records via
mDNS that advertise the presence of the fabric and provide
addresses to the consumer device

III. Data Transmitted in the Fabric

After creation of a fabric and address creation for the
nodes, data may be transmitted through the fabric. Data
passed through the fabric may be arranged in a format com-
mon to all messages and/or common to specific types of
conversations in the fabric. In some embodiments, the mes-
sage format may enable one-to-one mapping to JavaScript
Object Notation (JSON) using a TLV serialization format
discussed below. Additionally, although the following data
frames are described as including specific sizes, it should be
noted that lengths of the data fields in the data frames may be
varied to other suitable bit-lengths.

It should be understood that each of the following data
frames, profiles, and/or formats discussed below may be
stored in memory (e.g., memory of the device 10) prior to
and/or after transmission of a message. In other words,
although the data frame, profiles, and formats may be gener-
ally discussed as transmissions of data, they may also be
physically stored (e.g., in a buffer) before, during, and/or after
transmission of the data frame, profiles, and/or formats.
Moreover, the following data frames, profiles, schemas, and/
or formats may be stored on a non-transitory, computer-read-
able medium that allows an electronic device to access the
data frames, profiles, schemas, and/or formats. For example,
instructions for formatting the data frames, profiles, schemas,
and/or formats may be stored in any suitable computer-read-
able medium, such as in memory for the device 10, memory
of another device, a portable memory device (e.g., compact
disc, flash drive, etc.), or other suitable physical device suit-
able for storing the data frames, profiles, schemas, and/or
formats.

A. Security

Along with data intended to be transferred, the fabric may
transfer the data with additional security measures such as
encryption, message integrity checks, and digital signatures.
In some embodiments, a level of security supported for a
device may vary according to physical security of the device
and/or capabilities of the device. In certain embodiments,
messages sent between nodes in the fabric may be encrypted
using the Advanced Encryption Standard (AES) block cipher
operating in counter mode (AES-CTR) with a 128-bit key. As
discussed below, each message contains a 32-bit message id.
The message id may be combined with a sending nodes id to
form a nonce for the AES-CTR algorithm. The 32-bit counter
enables 4 billion messages to be encrypted and sent by each
node before a new key is negotiated.

In some embodiments, the fabric may insure message
integrity using a message authentication code, such as
HMAC-SHA-1, that may be included in each encrypted mes-
sage. In some embodiments, the message authentication code
may be generated using a 160-bit message integrity key that is
paired one-to-one with the encryption key. Additionally, each
node may check the message id of incoming messages against
a list of recently received ids maintained on a node-by-node
basis to block replay of the messages.

B. Tag Length Value (TLV) Formatting

To reduce power consumption, it is desirable to send at
least a portion of the data sent over the fabric that compactly
while enabling the data containers to flexibly represents data

20

40

45

55

16

that accommodates skipping data that is not recognized or
understood by skipping to the next location of data that is
understood within a serialization of the data. In certain
embodiments, tag-length-value (TLV) formatting may be
used to compactly and flexibly encode/decode data. By stor-
ing at least a portion of the transmitted data in TLV, the data
may be compactly and flexibly stored/sent along with low
encode/decode and memory overhead, as discussed below in
reference to Table 7. In certain embodiments, TLV may be
used for some data as flexible, extensible data, but other
portions of data that is not extensible may be stored and sent
in an understood standard protocol data unit (PDU).

Data formatted in a TLV format may be encoded as TLV
elements of various types, such as primitive types and con-
tainer types. Primitive types include data values in certain
formats, such as integers or strings. For example, the TLV
format may encode: 1, 2, 3, 4, or 8 byte signed/unsigned
integers, UTF-8 strings, byte strings, single/double-precision
floating numbers (e.g., IEEE 754-1985 format), boolean,
null, and other suitable data format types. Container types
include collections of elements that are then sub-classified as
container or primitive types. Container types may be classi-
fied into various categories, such as dictionaries, arrays, paths
or other suitable types for grouping TLV elements, known as
members. A dictionary is a collection of members each hav-
ing distinct definitions and unique tags within the dictionary.
An array is an ordered collection of members with implied
definitions or no distinct definitions. A path is an ordered
collection of members that described how to traverse a tree of
TLV elements.

As illustrated in FIG. 11, an embodiment of a TLV packet
1120 includes three data fields: a tag field 1122, a length field
1124, and a value field 1126. Although the illustrated fields
1122,1124, and 1126 are illustrated as approximately equiva-
lent in size, the size of each field may be variable and vary in
size in relation to each other. In other embodiments, the TLV
packet 1120 may further include a control byte before the tag
field 1122.

In embodiments having the control byte, the control byte
may be sub-divided into an element type field and a tag
control field. In some embodiments, the element type field
includes 5 lower bits of the control byte and the tag control
field occupies the upper 3 bits. The element type field indi-
cates the TLV element’s type as well as the how the length
field 1124 and value field 1126 are encoded. In certain
embodiments, the element type field also encodes Boolean
values and/or null values for the TLV. For example, an
embodiment of an enumeration of element type field is pro-
vided in Table 1 below.

TABLE 1

Example element type field values.

-~
=N
w
N
w
S}
—
=3

Signed Integer, 1 byte value value
Signed Integer, 2 byte value
Signed Integer, 4 byte value
Signed Integer, & byte value
Unsigned Integer, 1 byte value
Unsigned Integer, 2 byte value
Unsigned Integer, 4 byte value
Unsigned Integer, 8 byte value
Boolean False

Boolean True

Floating Point Number, 4 byte
value

Floating Point Number, & byte

OO O OO OO OO OO
= —_0 0000000
OO O R = ==, OO
_ OO =00k OO
O OO, ORO~O

<
—_
<
—_
—_

US 9,410,712 B2

17
TABLE 1-continued

Example element type field values.

7 6 5 4 3 2 1 0

value

UTF8-String, 1 byte length
UTF8-String, 2 byte length
UTF8-String, 4 byte length
UTF8-String, 8 byte length
Byte String, 1 byte length
Byte String, 2 byte length
Byte String, 4 byte length
Byte String, 8 byte length
Null

Dictionary

Array

Path

End of Container

e e e el e = N e N
O OO OO0 OO O~ —
O PR PO O0O0OCR =Pk
O OO OO M=o O
O, ORORORORORO

The tag control field indicates a form of the tag in the tag field
1122 assigned to the TLV element (including a zero-length
tag). Examples, of tag control field values are provided in
Table 2 below.

TABLE 2

Example values for tag control field.

7 6 5 4 3 2 1 0

0 0 0 Anonymous, O bytes

0 0 1 Context-specific Tag, 1 byte
0 1 0 Core Profile Tag, 2 bytes

0 1 1 Core Profile Tag, 4 bytes

1 0 0 Implicit Profile Tag, 2 bytes
1 0 1 Implicit Profile Tag, 4 bytes
1 1 0 Fully-qualified Tag, 6 bytes
1 1 1 Fully-qualified Tag, 8 bytes

In other words, in embodiments having a control byte, the
control byte may indicate a length of the tag.

In certain embodiments, the tag field 1122 may include
zero to eight bytes, such as eight, sixteen, thirty two, or sixty
fourbits. In some embodiments, the tag ofthe tag field may be
classified as profile-specific tags or context-specific tags. Pro-
file-specific tags identify elements globally using a vendor Id,
a profile 1d, and/or tag number as discussed below. Context-
specific tags identify TLV elements within a context of a
containing dictionary element and may include a single-byte
tag number. Since context-specific tags are defined in context
of their containers, a single context-specific tag may have
different interpretations when included in different contain-
ers. In some embodiments, the context may also be derived
from nested containers.

In embodiments having the control byte, the tag length is
encoded in the tag control field and the tag field 1122 includes
apossible three fields: a vendor Id field, a profile Id field, and
atag number field. In the fully-qualified form, the encoded tag
field 1122 includes all three fields with the tag number field
including 16 or 32 bits determined by the tag control field. In
the implicit form, the tag includes only the tag number, and
the vendor Id and profile number are inferred from the pro-
tocol context of the TLV element. The core profile form
includes profile-specific tags, as discussed above. Context-
specific tags are encoded as a single byte conveying the tag
number. Anonymous elements have zero-length tag fields
1122.

In some embodiments without a control byte, two bits may
indicate a length of the tag field 1122, two bits may indicate a
length of the length field 1124, and four bits may indicate a

10

15

20

25

30

35

40

45

50

55

60

65

18

type of information stored in the value field 1126. An example
of possible encoding for the upper 8 bits for the tag field is
illustrated below in Table 3.

TABLE 3

Tag field of a TLV packet

Byte

Description

Tag is 8 bits

Tag is 16 bits

Tag is 32 bits

Tag is 64 bits

Length is 8 bits
Length is 16 bits
Length is 32 bits
Length is 64 bits
Boolean

Fixed 8-bit Unsigned
Fixed 8-bit Signed
Fixed 16-bit Unsigned
Fixed 16-bit Signed
Fixed 32-bit Unsigned
Fixed 32-bit Signed
Fixed 64-bit Unsigned
Fixed 64-bit Signed
32-bit Floating Point
64-bit Floating Point
UTF-8 String

Opaque Data
Container

~m o000 ooOCO |
~— 0000, CODO |
CoORr—mOOR OO~ OO |
HOHOHOHOHOHOHo‘

As illustrated in Table 3, the upper 8 bits of the tag field 1122
may be used to encode information about the tag field 1122,
length field 1124, and the value field 1126, such that the tag
field 112 may be used to determine length for the tag field 122
and the length fields 1124. Remaining bits in the tag field
1122 may be made available for user-allocated and/or user-
assigned tag values.

The length field 1124 may include eight, sixteen, thirty
two, or sixty four bits as indicated by the tag field 1122 as
illustrated in Table 3 or the element field as illustrated in Table
2. Moreover, the length field 1124 may include an unsigned
integer that represents a length of the encoded in the value
field 1126. In some embodiments, the length may be selected
by a device sending the TLV element. The value field 1126
includes the payload data to be decoded, but interpretation of
the value field 1126 may depend upon the tag length fields,
and/or control byte. For example, a TLV packet without a
control byte including an 8 bit tag is illustrated in Table 4
below for illustration.

TABLE 4

Example of a TLV packet including an 8-bit tag

Tag Length Value Description
0x0d 0x24

0x09 0x04 0x42 95 00 00 74.5
0x09 0x04 0x42 98 66 66 76.2
0x09 0x04 0x42 94 99 9a 74.3
0x09 0x04 0x42 98 99 9a 76.3
0x09 0x04 0x42 9533 33 74.6
0x09 0x04 0x42 9833 33 76.1

As illustrated in Table 4, the first line indicates that the tag
field 1122 and the length field 1124 each have a length of 8
bits. Additionally, the tag field 1122 indicates that the tag type
is for the first line is a container (e.g., the TLV packet). The tag
field 1124 for lines two through six indicate that each entry in

US 9,410,712 B2

19

the TLV packet has a tag field 1122 and length field 1124
consisting of 8 bits each. Additionally, the tag field 1124
indicates that each entry in the TLV packet has a value field
1126 that includes a 32-bit floating point. Each entry in the
value field 1126 corresponds to a floating number that may be
decoded using the corresponding tag field 1122 and length
field 1124 information. As illustrated in this example, each
entry in the value field 1126 corresponds to a temperature in
Fahrenheit. As can be understood, by storing data in a TLV
packet as described above, data may be transferred compactly
while remaining flexible for varying lengths and information
as may be used by different devices in the fabric. Moreover, in
some embodiments, multi-byte integer fields may be trans-
mitted in little-endian order or big-endian order.

By transmitting TLV packets in using an order protocol
(e.g., little-endian) that may be used by sending/receiving
device formats (e.g., JSON), data transferred between nodes
may be transmitted in the order protocol used by at least one
of'the nodes (e.g., little endian). For example, if one or more
nodes include ARM or ix86 processors, transmissions
between the nodes may be transmitted using little-endian byte
ordering to reduce the use of byte reordering. By reducing the
inclusion of byte reordering, the TLV format enable devices
to communicate using less power than a transmission that
uses byte reordering on both ends of the transmission. Fur-
thermore, TLV formatting may be specified to provide a one-
to-one translation between other data storage techniques,
such as JSON+ Extensible Markup Language (XML). As an
example, the TLV format may be used to represent the fol-
lowing XML Property List:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE plist PUBLIC “-//Apple Computer//DTD PLIST 1.0/EN”
“http://www.apple.com/DTDs/PropertyList-1.0.dtd”>
<plist version="1.0">
<dict>
<key>OfflineMode</key>
<false/>
<key>Network</key>
<dict>
<key>IPv4</key>
<dict>
<key>Method</key>
<string>dhep</string>
</dict>
<key>IPv6</key>
<dict>
<key>Method</key>
<string>auto</string>
</dict>
</dict>
<key>Technologies</key>
<dict>
<key>wifi</key>
<dict>
<key>Enabled</key>
<true/>
<key>Devices</key>
<dict>
<key>wifi_ 18b4300008b027</key>
<dict>
<key>Enabled</key>
<true/>
</dict>
</dict>
<key>Services</key>
<array>
<string>wifi__18b4300008b027__3939382d33204 16
c70696e652054657 272616365</string>
</array>
</dict>
<key>R02.15.4</key>
<dict>

10

15

20

25

30

35

40

45

50

55

65

20

-continued

<key>Enabled</key>
<true/>
<key>Devices</key>
<dict>
<key>802.15.4__18b43000000002fac4</key>
<dict>
<key>Enabled</key>
<true/>
</dict>
</dict>
<key>Services</key>
<array>
<string>802.15.4__18b43000000002fac4__3 939382d332041
6¢70696e6520546572</string>
</array>
</dict>
</dict>
<key>Services</key>
<dict>
<key>wifi_ 18b4300008b027__3939382d3320416c70696€6520546572
72616365</key>
<dict>
<key>Name</key>
<string>998-3 Alpine Terrace</string™>
<key>SSID</key>
<data>3939382d3320416¢70696e652054657272616365
</data>
<key>Frequency</key>
<integer>2462</integer>
<key>AutoConnect</key>
<true/>
<key>Favorite</key>
<true/>
<key>Error</key>
<string/>
<key>Network</key>
<dict>
<key>IPv4</key>
<dict>
<key>DHCP</key>
<dict>
<key>LastAddress</key>
<data>0a02001e</data>
</dict>
</dict>
<key>IPv6</key>
<dict/>
</dict>
</dict>
<key>802.15.4__18b43000000002fac4_3939382d3320416c70696e
6520546572</key>
<dict>
<key>Name</key>
<string>998-3 Alpine Ter</string>
<key>EPANID</key>
<data>3939382d3320416¢70696e6520546572</data>
<key>Frequency</key>
<integer>2412</integer>
<key>AutoConnect</key>
<true/>
<key>Favorite</key>
<true/>
<key>Error</key>
<string/>
<key>Network</key>
<dict/>
</dict>
</dict>
</dict>
</plist

As an example, the above property list may be represented in
tags of the above described TLV format (without a control
byte) according to Table 5 below.

21
TABLE 5

US 9,410,712 B2

22
TABLE 5-continued

Example representation of the XML Property List in TLV format

Example representation of the XML Property List in TLV format

XML Key Tag Type Tag Number 5 XML Key Tag Type Tag Number
OfflineMode Boolean 1 EPANID Data 15

IPv4 Container 3 Frequency 16-bit Unsigned 16

IPv6 Container 4 AutoConnect Boolean 17

Method String 5 Favorite Boolean 18
Technologies Container 6 Error String 19

WiFi Container 7 10 DHCP String 20

802.15.4 Container 8 LastAddress Data 21

Enabled Boolean 9 Device Container 22

Devices Container 10 Service Container 23

D String 11

Services Container 12 L. . .

Name String 13 15 Similarly, Table 6 illustrates an example of literal tag, length,
SSID Data 14 and value representations for the example XML Property

List.

TABLE 6

Example of literal values for tag, length, and value fields for XML Property List

Tag Length Value Description

0x4001 0x01 0 OfflineMode

0x4d 02 0x14 Network

0x4d 03 0x07 Network.IPv4

0x4b 05 0x04 “dhep” Network.IPv4.Method

0x4d 04 0x07 Network. IPv6

0x4b 05 0x04 “auto” Network.IPv6.Method

0x4d 06 0xd6 Technologies

0x4d 07 0x65 Technologies.wifi

0x40 09 0x01 1 Technologies.wifi.Enabled

0x4d 0a 0x5e Technologies.wifi.Devices

0x4d 16 0x5b Technologies.wifi.Devices.Device.[0]

0x4b 0b 0x13 “wifi_18b43 ...~ Technologies.wifi. Devices.Device.[0].ID

0x40 09 0x01 1 Technologies.wifi.Devices.Device.[0].Enabled
0x4d Oc Ox3e Technologies.wifi.Devices.Device.[0].Services
0x0b 0x3c “wifi__18b43 ...~ Technologies.wifi. Devices.Device.[0].Services.[0]
0x4d 08 0x6b Technologies.802.15.4

0x40 09 0x01 1 Technologies.802.15.4.Enabled

0x4d 0a 0x64 Technologies.802.15.4.Devices

0x4d 16 0x61 Technologies.802.15.4.Devices.Device.[0]

0x4b 0b Oxla “802.15.4_18...” Technologies.802.15.4.Devices.Device.[0].ID
0x40 09 0x01 1 Technologies.802.15.4.Devices.Device.[0].Enabled
0x4d Oc 0x3d Technologies.802.15.4.Devices.Device.[0].Services
0x0b 0x3b “802.15.4_18...” Technologies.802.15.4.Devices.Device.[0].Services.[0]
0x4d Oc Oxcb Services

0x4d 17 0x75 Services.Service.[0]

0x4b 0b 0x13 “wifi_18b43...” Services.Service.[0].ID

0x4b 0d 0x14 “998-3 Alp...” Services.Service.[0].Name

Ox4c 0f 0x28 3939382d ... Services.Service.[0].SSID

0x45 10 0x02 2462 Services.Service.[0].Frequency

0x40 11 0x01 1 Services.Service.[0].AutoConnect

0x40 12 0x01 1 Services.Service.[0].Favorite

0x4d 02 0x0d Services.Service.[0].Network

0x4d 03 0Ox0a Services.Service.[0].Network.IPv4

0x4d 14 0x07 Services.Service.[0].Network.JPv4. DHCP

0x45 15 0x04 0x0a02001e Services.Service.[0].Network. IPv4.LastAddress
0x4d 17 0x50 Services.Service.[1]

0x4b 0b Oxla “802.15.4_18...” Services.Service.[1].ID

Ox4c 0d 0x10 “998-3 Alp...” Services.Service.[1].Name

Ox4c 0f 0x10 3939382d ... Services.Service.[1].EPANID

0x45 10 0x02 2412 Services.Service.[1].Frequency

0x40 11 0x01 1 Services.Service.[1].AutoConnect

0x40 12 0x01 1 Services.Service.[1].Favorite

US 9,410,712 B2

23

The TLV format enables reference of properties that may also
be enumerated with XML, but does so with a smaller storage
size. For example, Table 7 illustrates a comparison of data
sizes of the XML Property List, a corresponding binary prop-
erty list, and the TLV format.

TABLE 7
Comparison of the sizes of property list data sizes.
List Type Size in Bytes Percentage of XML Size
XML 2,199 —
Binary 730 -66.8%
TLV 450 -79.5%

By reducing the amount of data used to transfer data, the TLV
format enables the fabric 1000 transfer data to and/or from
devices having short duty cycles due to limited power (e.g.,
battery supplied devices). In other words, the TLV format
allows flexibility of transmission while increasing compact-
ness of the data to be transmitted.

C. General Message Protocol

In addition to sending particular entries of varying sizes,
data may be transmitted within the fabric using a general
message protocol that may incorporate TLV formatting. An
embodiment of a general message protocol (GMP) 1128 is
illustrated in FIG. 12. In certain embodiments, the general
message protocol (GMP) 1128 may be used to transmit data
within the fabric. The GMP 1128 may be used to transmit data
via connectionless protocols (e.g., UDP) and/or connection-
oriented protocols (e.g., TCP). Accordingly, the GMP 1128
may flexibly accommodate information that is used in one
protocol while ignoring such information when using another
protocol. Moreover, the GMP 1226 may enable omission of
fields that are not used in a specific transmission. Data that
may be omitted from one or more GMP 1226 transfers is
generally indicated using grey borders around the data units.
In some embodiments, the multi-byte integer fields may be
transmitted in a little-endian order or a big-endian order.

i. Packet Length

In some embodiments, the GMP 1128 may include a
Packet Length field 1130. In some embodiments, the Packet
Length field 1130 includes 2 bytes. A value in the Packet
Length field 1130 corresponds to an unsigned integer indi-
cating an overall length of the message in bytes, excluding the
Packet Length field 1130 itself. The Packet Length field 1130
may be present when the GMP 1128 is transmitted overa TCP
connection, but when the GMP 1128 is transmitted over a
UDP connection, the message length may be equal to the
payload length of the underlying UDP packet obviating the
Packet Length field 1130.

ii. Message Header

The GMP 1128 may also include a Message Header 1132
regardless of whether the GMP 1128 is transmitted using TCP
or UDP connections. In some embodiments, the Message
Header 1132 includes two bytes of data arranged in the format
illustrated in FIG. 13. As illustrated in FIG. 13, the Message
Header 1132 includes a Version field 1156. The Version field
1156 corresponds to a version of the GMP 1128 that is used to
encode the message. Accordingly, as the GMP 1128 is
updated, new versions of the GMP 1128 may be created, but
each device in a fabric may be able to receive a data packet in
any version of GMP 1128 known to the device. In addition to
the Version field 1156, the Message Header 1132 may include
an S Flag field 1158 and a D Flag 1160. The S Flag 1158 is a
single bit that indicates whether a Source Node Id (discussed
below) field is included in the transmitted packet. Similarly,

10

15

20

25

30

35

40

45

50

55

60

65

24

the D Flag 1160 is a single bit that indicates whether a Des-
tination Node Id (discussed below) field is included in the
transmitted packet.

The Message Header 1132 also includes an Encryption
Type field 1162. The Encryption Type field 1162 includes
four bits that specify which type of encryption/integrity
checking applied to the message, if any. For example, 0x0
may indicate that no encryption or message integrity check-
ing is included, but a decimal 0x1 may indicate that AES-128-
CTR encryption with HMAC-SHA-1 message integrity
checking is included.

Finally, the Message Header 1132 further includes a Sig-
nature Type field 1164. The Signature Type field 1164
includes four bits that specify which type of digital signature
is applied to the message, if any. For example, 0x0 may
indicate that no digital signature is included in the message,
but 0x1 may indicate that the Elliptical Curve Digital Signa-
ture Algorithm (ECDSA) with Prime256v1 elliptical curve
parameters is included in the message.

iii. Message Id

Returning to FIG. 12, the GMP 1128 also includes a Mes-
sage Id field 1134 that may be included in a transmitted
message regardless of whether the message is sent using TCP
or UDP. The Message Id field 1134 includes four bytes that
correspond to an unsigned integer value that uniquely iden-
tifies the message from the perspective of the sending node. In
some embodiments, nodes may assign increasing Message Id
1134 values to each message that they send returning to zero
after reaching 2> messages.

iv. Source Node Id

In certain embodiments, the GMP 1128 may also include a
Source Node Id field 1136 that includes eight bytes. As dis-
cussed above, the Source Node Id field 1136 may be present
in a message when the single-bit S Flag 1158 in the Message
Header 1132 is set to 1. In some embodiments, the Source
Node Id field 1136 may contain the Interface ID 1104 of the
ULA 1098 or the entire ULA 1098. In some embodiments, the
bytes of the Source Node Id field 1136 are transmitted in an
ascending index-value order (e.g., EUI[0] then EUI[1] then
EUI[2] then EUI[3], etc.).

v. Destination Node Id

The GMP 1128 may include a Destination Node Id field
1138 that includes eight bytes. The Destination Node Id field
1138 is similar to the Source Node 1Id field 1136, but the
Destination Node Id field 1138 corresponds to a destination
node for the message. The Destination Node Id field 1138
may be present in a message when the single-bit D Flag 1160
in the Message Header 1132 is set to 1. Also similar to the
Source Node Id field 1136, in some embodiments, bytes of the
Destination Node Id field 1138 may be transmitted in an
ascending index-value order (e.g., EUI[0] then EUI[1] then
EUI[2] then EUI[3], etc.).

vi. Key Id

In some embodiments, the GMP 1128 may include a Key
1d field 1140. In certain embodiments, the Key Id field 1140
includes two bytes. The Key Id field 1140 includes an
unsigned integer value that identifies the encryption/message
integrity keys used to encrypt the message. The presence of
the Key Id field 1140 may be determined by the value of
Encryption Type field 1162 of the Message Header 1132. For
example, in some embodiments, when the value for the
Encryption Type field 1162 of the Message Header 1132 is
0x0, the Key Id field 1140 may be omitted from the message.

An embodiment of the Key Id field 1140 is presented in
FIG. 14. In the illustrated embodiment, the Key 1d field 1140
includes a Key Type field 1166 and a Key Number field 1168.
In some embodiments, the Key Type field 1166 includes four

US 9,410,712 B2

25

bits. The Key Type field 1166 corresponds to an unsigned
integer value that identifies a type of encryption/message
integrity used to encrypt the message. For example, in some
embodiments, ifthe Key Type field 1166 is 0x0, the fabric key
is shared by all or most of the nodes in the fabric. However, if
the Key Type field 1166 is 0x1, the fabric key is shared by a
pair of nodes in the fabric.

The Key Id field 1140 also includes a Key Number field
1168 that includes twelve bits that correspond to an unsigned
integer value that identifies a particular key used to encrypt
the message out of a set of available keys, either shared or
fabric keys.

vii. Payload Length

In some embodiments, the GMP 1128 may include a Pay-
load Length field 1142. The Payload Length field 1142, when
present, may include two bytes. The Payload Length field
1142 corresponds to an unsigned integer value that indicates
a size in bytes of the Application Payload field. The Payload
Length field 1142 may be present when the message is
encrypted using an algorithm that uses message padding, as
described below in relation to the Padding field.

viii. Initialization Vector

In some embodiments, the GMP 1128 may also include an
Initialization Vector (IV) field 1144. The 1V field 1144, when
present, includes a variable number of bytes of data. The IV
field 1144 contains cryptographic IV values used to encrypt
the message. The IV field 1144 may be used when the mes-
sage is encrypted with an algorithm that uses an IV. The
length of the 1V field 1144 may be derived by the type of
encryption used to encrypt the message.

ix. Application Payload

The GMP 1128 includes an Application Payload field
1146. The Application Payload field 1146 includes a variable
number of bytes. The Application Payload field 1146 includes
application data conveyed in the message. The length of the
Application Payload field 1146 may be determined from the
Payload Length field 1142, when present. If the Payload
Length field 1142 is not present, the length of the Application
Payload field 1146 may be determined by subtracting the
length of all other fields from the overall length of the mes-
sage and/or data values included within the Application Pay-
load 1146 (e.g., TLV).

An embodiment of the Application Payload field 1146 is
illustrated in FIG. 15. The Application Payload field 1146
includes an APVersion field 1170. In some embodiments, the
APVersion field 1170 includes eight bits that indicate what
version of fabric software is supported by the sending device.
The Application Payload field 1146 also includes a Message
Type field 1172. The Message Type field 1172 may include
eight bits that correspond to a message operation code that
indicates the type of message being sent within a profile. For
example, in a software update profile, a 0x00 may indicate
that the message being sent is an image announce. The Appli-
cation Payload field 1146 further includes an Exchange Id
field 1174 that includes sixteen bits that corresponds to an
exchange identifier that is unique to the sending node for the
transaction.

In addition, the Application Payload field 1146 includes a
Profile Id field 1176. The Profile Id 1176 indicates a “theme of
discussion” used to indicate what type of communication
occurs in the message. The Profile Id 1176 may correspond to
one or more profiles that a device may be capable of commu-
nicating. For example, the Profile Id 1176 may indicate that
the message relates to a core profile, a software update profile,
a status update profile, a data management profile, a climate
and comfort profile, a security profile, a safety profile, and/or
other suitable profile types. Each device on the fabric may

25

30

40

45

55

26

include a list of profiles which are relevant to the device and
in which the device is capable of “participating in the discus-
sion.” For example, many devices in a fabric may include the
core profile, the software update profile, the status update
profile, and the data management profile, but only some
devices would include the climate and comfort profile. The
APVersion field 1170, Message Type field 1172, the
Exchange 1d field, the Profile Id field 1176, and the Profile-
Specific Header field 1176, if present, may be referred to in
combination as the “Application Header.”

In some embodiments, an indication of the Profile 1d via
the Profile Id field 1176 may provide sufficient information to
provide a schema for data transmitted for the profile. How-
ever, in some embodiments, additional information may be
used to determine further guidance for decoding the Applica-
tion Payload field 1146. In such embodiments, the Applica-
tion Payload field 1146 may include a Profile-Specific Header
field 1178. Some profiles may not use the Profile-Specific
Header field 1178 thereby enabling the Application Payload
field 1146 to omit the Profile-Specific Header field 1178.
Upon determination of a schema from the Profile Id field 1176
and/or the Profile-Specific Header field 1178, data may be
encoded/decoded in the Application Payload sub-field 1180.
The Application Payload sub-field 1180 includes the core
application data to be transmitted between devices and/or
services to be stored, rebroadcast, and/or acted upon by the
receiving device/service.

x. Message Integrity Check

Returning to FIG. 12, in some embodiments, the GMP
1128 may also include a Message Integrity Check (MIC) field
1148. The MIC field 1148, when present, includes a variable
length of bytes of data containing a MIC for the message. The
length and byte order of the field depends upon the integrity
check algorithm in use. For example, if the message is
checked for message integrity using HMAC-SHA-1, the MIC
field 1148 includes twenty bytes in big-endian order. Further-
more, the presence of the MIC field 1148 may be determined
by whether the Encryption Type field 1162 of the Message
Header 1132 includes any value other than 0x0.

xi. Padding

The GMP 1128 may also include a Padding field 1150. The
Padding field 1150, when present, includes a sequence of
bytes representing a cryptographic padding added to the mes-
sage to make the encrypted portion of the message evenly
divisible by the encryption block size. The presence of the
Padding field 1150 may be determined by whether the type of
encryption algorithm (e.g., block ciphers in cipher-block
chaining mode) indicated by the Encryption Type field 1162
in the Message Header 1132 uses cryptographic padding.

xii. Encryption

The Application Payload field 1146, the MIC field 1148,
and the Padding field 1150 together form an Encryption block
1152. The Encryption block 1152 includes the portions of the
message that are encrypted when the the Encryption Type
field 1162 in the Message Header 1132 is any value other than
0x0.

xiii. Message Signature

The GMP 1128 may also include a Message Signature field
1154. The Message Signature field 1154, when present,
includes a sequence of bytes of variable length that contains a
cryptographic signature of the message. The length and the
contents of the Message Signature field may be determined
according to the type of signature algorithm in use and indi-
cated by the Signature Type field 1164 of the Message Header
1132. For example, if ECDSA using the Prime256v1 ellipti-

US 9,410,712 B2

27

cal curve parameters is the algorithm in use, the Message
Signature field 1154 may include two thirty-two bit integers
encoded in little-endian order.

IV. Profiles and Protocols

As discussed above, one or more schemas of information
may be selected upon desired general discussion type for the
message. A profile may consist of one or more schemas. For
example, one set of schemas of information may be used to
encode/decode data in the Application Payload sub-field
1180 when one profile is indicated in the Profile Id field 1176
of'the Application Payload 1146. However, a different set of
schemas may be used to encode/decode data in the Applica-
tion Payload sub-field 1180 when a different profile is indi-
cated in the Profile Id field 1176 of the Application Payload
1146.

FIG. 16 illustrates a schematic view of a variety of profiles
that may be used in various messages. For example, one or
more profile schemas may be stored in a profile library 300
that may be used by the devices to encode or decode messages
based ona profile ID. The profile library 300 may organize the
profiles into groups. For example, an application- and vendor-
specific profile group 302 of profiles may be application- and
vendor-specific profiles, and a provisioning group 304 of
profiles may profiles used to provision networks, services,
and/or fabrics. The application- and vendor-specific profile
group 302 may include a software update profile 306, a locale
profile 308, a time profile 310, a sensor profile 312, an access
control profile 314, an alarm profile 316, and one or more
vendor unique profiles 318. The software update profile 306
may be used by the devices to update software within the
devices. The locale profile 308 may be used to specify a
location and/or language set as the active locale for the
device. The alarm profile 316 may be used to send, read, and
propagate alarms.

The profiles library 300 may also include a device control
profile 320, a network provisioning profile 322, a fabric pro-
visioning profile 324, and a service provisioning profile 326.
The device control profile 320 allows one device to request
that another device exercise a specified device control (e.g.,
arm failsafe, etc.) capability. The network provisioning pro-
file 322 enables a device to be added to a new logical network
(e.g., WiFi or 802.15.4). The fabric provisioning profile 324
allows the devices to join a pre-existing fabric or create a new
fabric. The service provisioning profile 326 enables the
devices to be paired to a service.

The profiles library 300 may also include a strings profile
328, a device description profile 330, a device profile 332,
device power extended profile 334, a device power profile
336, a device connectivity extended profile 338, a device
connectivity profile 340, a service directory profile 342, a data
management profile 344, an echo profile 346, a security pro-
file 348, and a core profile 350. The device description profile
330 may be used by a device to identify one or more other
devices. The service directory profile 342 enables a device to
communicate with a service. The data management profile
344 enables devices to view and/or track data stored in
another device. The echo profile 346 enables a device to
determine whether the device is connected to a target device

10

15

20

30

35

40

45

50

55

28

and the latency in the connection. The security profile 348
enables the devices to communicate securely.

The core profile 350 includes a status reporting profile 352
that enables devices to report successes and failures of
requested actions. Additionally, in certain embodiments, each
device may include a set of methods used to process profiles.
For example, a core protocol may include the following pro-
files: GetProfiles, GetSchema, GetSchemas, GetProperty,
GetProperties, SetProperty, SetProperties, RemoveProperty,
RemoveProperties, RequestEcho, NotifyPropertyChanged,
and/or NotifyPropertiesChanged. The Get Profiles method
may return an array of profiles supported by a queried node.
The GetSchema and GetSchemas methods may respectively
return one or all schemas for a specific profile. GetProperty
and GetProperties may respectively return a value or all value
pairs for a profile schema. SetProperty and SetProperties may
respectively set single or multiple values for a profile schema.
RemoveProperty and RemoveProperties may respectively
attempt to remove a single or multiple values from a profile
schema. RequestEcho may send an arbitrary data payload to
a specified node which the node returns unmodified. Noti-
fyPropertyChange and NotifyPropertiesChanged may
respectively issue a notification if a single/multiple value
pairs have changed for a profile schema.

To aid in understanding profiles and schemas, a non-exclu-
sive list of profiles and schemas are provided below for illus-
trative purposes.

A. Status Reporting

A status reporting schema is presented as the status report-
ing frame 1182 in FIG. 17. The status reporting schema may
be a separate profile or may be included in one or more
profiles (e.g., a core profile). In certain embodiments, the
status reporting frame 1182 includes a profile field 1184, a
status code field 1186, a next status field 1188, and may
include an additional status info field 1190.

i. Profile Field

In some embodiments, the profile field 1184 includes four
bytes of data that defines the profile under which the infor-
mation in the present status report is to be interpreted. An
embodiment of the profile field 1184 is illustrated in FIG. 18
with two sub-fields. In the illustrated embodiment, the profile
field 1184 includes a profile Id sub-field 1192 that includes
sixteen bits that corresponds to a vendor-specific identifier for
the profile under which the value of the status code field 1186
is defined. The profile field 1184 may also includes a vendor
1d sub-field 1194 that includes sixteen bits that identifies a
vendor providing the profile identified in the profile Id sub-
field 1192.

ii. Status Code

In certain embodiments, the status code field 1186 includes
sixteen bits that encode the status that is being reported. The
values in the status code field 1186 are interpreted in relation
to values encoded in the vendor Id sub-field 1192 and the
profile Id sub-field 1194 provided in the profile field 1184.
Additionally, in some embodiments, the status code space
may be divided into four groups, as indicated in Table 8
below.

TABLE 8

Status Code Range Table

Range Name Description
0x0000 . ..0x0010 success A request was successfully processed.
0x0011...0x0020 client error An error has or may have occurred on the client-side

of a client/server exchange. For example, the client
has made a badly-formed request.

US 9,410,712 B2

29
TABLE 8-continued

30

Status Code Range Table

Range Name Description

0x0021 ...0x0030 server error

An error has or may have occurred on the server side

of a client/server exchange. For example, the server
has failed to process a client request to an operating

system error.

0x0031 ...0x0040 continue/redirect

Additional processing will be used, such as

redirection, to complete a particular exchange, but no

errors yet.

Although Table 8 identifies general status code ranges that
may be used separately assigned and used for each specific
profile Id, in some embodiments, some status codes may be
common to each of the profiles. For example, these profiles
may be identified using a common profile (e.g., core profile)
identifier, such as 0x00000000.

iii. Next Status

In some embodiments, the next status code field 1188
includes eight bits. The next status code field 1188 indicates
whether there is following status information after the cur-
rently reported status. If following status information is to be
included, the next status code field 1188 indicates what type
of status information is to be included. In some embodiments,
the next status code field 1188 may always be included,
thereby potentially increasing the size of the message. How-
ever, by providing an opportunity to chain status information
together, the potential for overall reduction of data sent may
be reduced. If the next status field 1186 is 0x00, no following
status information field 1190 is included. However, non-zero
values may indicate that data may be included and indicate
the form in which the data is included (e.g., in a TLV packet).

iv. Additional Status Info

When the next status code field 1188 is non-zero, the addi-
tional status info field 1190 is included in the message. If
present, the status item field may contain status in a form that
may be determined by the value of the preceding status type
field (e.g., TLV format)

B. Software Update

The software update profile or protocol is a set of schemas
and a client/server protocol that enables clients to be made
aware of or seek information about the presence of software
that they may download and install. Using the software
update protocol, a software image may be provided to the
profile client in a format known to the client. The subsequent
processing of the software image may be generic, device-
specific, or vendor-specific and determined by the software
update protocol and the devices.

i. General Application Headers for the Application Payload

In order to be recognized and handled properly, software
update profile frames may be identified within the Applica-
tion Payload field 1146 of the GMP 1128. In some embodi-
ments, all software update profile frames may use a common
Profile 1d 1176, such as 0x0000000C. Additionally, software
update profile frames may include a Message Type field 1172
that indicates additional information and may chosen accord-
ing to Table 9 below and the type of message being sent.

TABLE 9

Software update profile message types

Type Message
0x00 image announce
0x01 image query

20

40

45

60

65

TABLE 9-continued

Software update profile message types

Type Message

0x02 image query
response

0x03 download notify

0x04 notify response

0x05 update notify

0x06 . . . Oxff reserved

Additionally, as described below, the software update
sequence may be initiated by a server sending the update as an
image announce or a client receiving the update as an image
query. In either embodiment, an Exchange Id 1174 from the
initiating event is used for all messages used in relation to the
software update.

ii. Protocol Sequence

FIG. 19 illustrates an embodiment of a protocol sequence
1196 for a software update between a software update client
1198 and a software update server 1200. In certain embodi-
ments, any device in the fabric may be the software update
client 1198 or the software update server 1200. Certain
embodiments of the protocol sequence 1196 may include
additional steps, such as those illustrated as dashed lines that
may be omitted in some software update transmissions.

1. Service Discovery

In some embodiments, the protocol sequence 1196 begins
with a software update profile server announcing a presence
of the update. However, in other embodiments, such as the
illustrated embodiment, the protocol sequence 1196 begins
with a service discovery 1202, as discussed above.

2. Image Announce

In some embodiments, an image announce message 1204
may be multicast or unicast by the software update server
1200. The image announce message 1204 informs devices in
the fabric that the server 1200 has a software update to offer.
If the update is applicable to the client 1198, upon receipt of
the image announce message 1204, the software update client
1198 responds with an image query message 1206. In certain
embodiments, the image announce message 1204 may not be
included in the protocol sequence 1196. Instead, in such
embodiments, the software update client 1198 may use a
polling schedule to determine when to send the image query
message 1206.

3. Image Query

In certain embodiments, the image query message 1206
may be unicast from the software update client 1198 either in
response to an image announce message 1204 or according to
a polling schedule, as discussed above. The image query
message 1206 includes information from the client 1198
about itself. An embodiment of a frame of the image query
message 1206 is illustrated in FIG. 20. As illustrated in FIG.

US 9,410,712 B2

31

20, certain embodiments of the image query message 1206
may include a frame control field 1218, a product specifica-
tion field 1220, a vendor specific data field 1222, a version
specification field 1224, a locale specification field 1226, an
integrity type supported field 1228, and an update schemes
supported field 1230.

a. Frame Control

The frame control field 1218 includes 1 byte and indicates
various information about the image query message 1204. An
example of the frame control field 128 is illustrated in FIG.
21. As illustrated, the frame control field 1218 may include
three sub-fields: vendor specific flag 1232, locale specifica-
tion flag 1234, and a reserved field S3. The vendor specific
flag 1232 indicates whether the vendor specific data field
1222 is included in the message image query message. For
example, when the vendor specific flag 1232 is 0 no vendor
specific data field 1222 may be present in the image query
message, but when the vendor specific flag 1232 is 1 the
vendor specific data field 1222 may be present in the image
query message. Similarly, a 1 value in the locale specification
flag 1234 indicates that a locale specification field 1226 is
present in the image query message, and a 0 value indicates
that the locale specification field 1226 in not present in the
image query message.

b. Product Specification

The product specification field 1220 is a six byte field. An
embodiment of the product specification field 1220 is illus-
trated in FIG. 22. As illustrated, the product specification field
1220 may include three sub-fields: a vendor Id field 1236, a
product Id field 1238, and a product revision field 1240. The
vendor Id field 1236 includes sixteen bits that indicate a
vendor for the software update client 1198. The product Id
field 1238 includes sixteen bits that indicate the device prod-
uct that is sending the image query message 1206 as the
software update client 1198. The product revision field 1240
includes sixteen bits that indicate a revision attribute of the
software update client 1198.

¢. Vendor Specific Data

The vendor specific data field 1222, when present in the
image query message 1206, has a length of a variable number
of'bytes. The presence of the vendor specific data field 1222
may be determined from the vendor specific flag 1232 of the
frame control field 1218. When present, the vendor specific
data field 1222 encodes vendor specific information about the
software update client 1198 in a TLV format, as described
above.

d. Version Specification

An embodiment of the version specification field 1224 is
illustrated in FIG. 23. The version specification field 1224
includes a variable number of bytes sub-divided into two
sub-fields: a version length field 1242 and a version string
field 1244. The version length field 1242 includes eight bits
that indicate a length of the version string field 1244. The
version string field 1244 is variable in length and determined
by the version length field 1242. In some embodiments, the
version string field 1244 may be capped at 255 UTF-8 char-
acters in length. The value encoded in the version string field
1244 indicates a software version attribute for the software
update client 1198.

e. Locale Specification

In certain embodiments, the locale specification field 1226
may be included in the image query message 1206 when the
locale specification flag 1234 of the frame control 1218 is 1.
An embodiment of the locale specification field 1226 is illus-
trated in FIG. 24. The illustrated embodiment of the locale
specification field 1226 includes a variable number of bytes
divided into two sub-fields: a locale string length field 1246

10

15

20

25

30

35

40

45

50

55

60

65

32

and a locale string field 1248. The locale string length field
1246 includes eight bits that indicate a length of the locale
string field 1248. The locale string field 1248 of the locale
specification field 1226 may be variable in length and contain
a string of UTF-8 characters encoding a local description
based on Portable Operating System Interface (POSIX)
locale codes. The standard format for POSIX locale codes is
[language| _territory][.codeset]|[@modifier]] For example,
the POSIX representation for Australian English is en_A-
U.UTES.

f. Integrity Types Supported

An embodiment of the integrity types field 1228 is illus-
trated in FIG. 25. The integrity types supported field 1228
includes two to four bytes of data divided into two sub-fields:
a type list length field 1250 and an integrity type list field
1252. The type list length field 1250 includes eight bits that
indicate the length in bytes of the integrity type list field 1252.
The integrity type list field 1252 indicates the value of the
software update integrity type attribute of the software update
client 1198. In some embodiments, the integrity type may be
derived from Table 10 below.

TABLE 10

Example integrity types

Value Integrity Type
0x00 SHA-160
0x01 SHA-256
0x02 SHA-512

The integrity type list field 1252 may contain at least one
element from Table 10 or other additional values not
included.

g. Update Schemes Supported

An embodiment of the schemes supported field 1230 is
illustrated in FIG. 26. The schemes supported field 1230
includes a variable number of bytes divided into two sub-
fields: a scheme list length field 1254 and an update scheme
list field 1256. The scheme list length field 1254 includes
eight bits that indicate a length of the update scheme list field
in bytes. The update scheme list field 1256 of the update
schemes supported field 1222 is variable in length determined
by the scheme list length field 1254. The update scheme list
field 1256 represents an update schemes attributes of the
software update profile of the software update client 1198. An
embodiment of example values is shown in Table 11 below.

TABLE 11

Example update scheme;

Value Update Scheme

0x00 HTTP

0x01 HTTPS

0x02 SFTP

0x03 Fabric-specific File Transfer Protocol

(e.g., Bulk Data Transfer discussed
below)

Upon receiving the image query message 1206, the software
update server 1200 uses the transmitted information to deter-
mine whether the software update server 1200 has an update
for the software update client 1198 and how best to deliver the
update to the software update client 1198.

4. Image Query Response

Returning to FIG. 19, after the software update server 1200
receives the image query message 1206 from the software

US 9,410,712 B2

33

update client 1198, the software update server 1200 responds
with an image query response 1208. The image query
response 1208 includes either information detailing why an
update image is not available to the software update client
1198 or information about the available image update to
enable to software update client 1198 to download and install
the update.

An embodiment of a frame of the image query response
1208 is illustrated in FIG. 27. As illustrated, the image query
response 1208 includes five possible sub-fields: a query status
field 1258, a uniform resource identifier (URI) field 1260, an
integrity specification field 1262, an update scheme field
1264, and an update options field 1266.

a. Query Status

The query status field 1258 includes a variable number of
bytes and contains status reporting formatted data, as dis-
cussed above in reference to status reporting. For example,
the query status field 1258 may include image query response
status codes, such as those illustrated below in Table 12.

TABLE 12

Example image query response status codes

Profile Code Description

0x00000000 0x0000 The server has processed the image query
message 1206 and has an update for the
software update client 1198.

0x0000000C 0x0001 The server has processed the image query
message 1206, but the server does not have
an update for the software update client 1198.

0x00000000 0x0010 The server could not process the request
because of improper form for the request.

0x00000000 0x0020 The server could not process the request due
to an internal error

b. URI

The URI field 1260 includes a variable number of bytes.
The presence of the URI field 1260 may be determined by the
query status field 1258. If the query status field 1258 indicates
that an update is available, the URI field 1260 may be
included. An embodiment of the URI field 1260 is illustrated
in FIG. 28. The URI field 1260 includes two sub-fields: a URI
length field 1268 and a URI string field 1270. The URI length
field 1268 includes sixteen bits that indicates the length of the
URI string field 1270 in UTF-8 characters. The URI string
field 1270 and indicates the URI attribute of the software
image update being presented, such that the software update
client 1198 may be able to locate, download, and install a
software image update, when present.

c. Integrity Specification

The integrity specification field 1262 may variable in
length and present when the query status field 1258 indicates
that an update is available from the software update server
1198 to the software update client 1198. An embodiment of
the integrity specification field 1262 is illustrated in FIG. 29.
As illustrated, the integrity specification field 1262 includes
two sub-fields: an integrity type field 1272 and an integrity
value field 1274. The integrity type field 1272 includes eight
bits that indicates an integrity type attribute for the software
image update and may be populated using a list similar to that
illustrated in Table 10 above. The integrity value field 1274
includes the integrity value that is used to verify that the
image update message has maintained integrity during the
transmission.

d. Update Scheme

The update scheme field 1264 includes eight bits and is
present when the query status field 1258 indicates that an

15

20

25

35

40

45

50

55

65

34

update is available from the software update server 1198 to
the software update client 1198. If present, the update scheme
field 1264 indicates a scheme attribute for the software update
image being presented to the software update server 1198.

e. Update Options

The update options field 1266 includes eight bits and is
present when the query status field 1258 indicates that an
update is available from the software update server 1198 to
the software update client 1198. The update options field
1266 may be sub-divided as illustrated in FIG. 30. As illus-
trated, the update options field 1266 includes four sub-fields:
an update priority field 1276, an update condition field 1278,
a report status flag 1280, and a reserved field 1282. In some
embodiments, the update priority field 1276 includes two
bits. The update priority field 1276 indicates a priority
attribute of the update and may be determined using values
such as those illustrated in Table 13 below.

TABLE 13

Example update priority values

Value Description
00 Normal - update during a period of low network traffic
01 Critical - update as quickly as possible

The update condition field 1278 includes three bits that may
beused to determine conditional factors to determine when or
if to update. For example, values in the update condition field
1278 may be decoded using the Table 14 below.

TABLE 14
Example update conditions
Value Decryption
0 Update without conditions
1 Update if the version of the software running on the update
client software does not match the update version.
2 Update if the version of the software running on the update
client software is older than the update version.
3 Update if the user opts into an update with a user interface

The report status flag 1280 is a single bit that indicates
whether the software update client 1198 should respond with
adownload notify message 1210. If the report status flag 1280
is set to 1 the software update server 1198 is requesting a
download notify message 1210 to be sent after the software
update is downloaded by the software update client 1200.

If the image query response 1208 indicates that an update
is available. The software update client 1198 downloads 1210
the update using the information included in the image query
response 1208 at atime indicated in the image query response
1208.

5. Download Notify

After the update download 1210 is successtully completed
or failed and the report status flag 1280 value is 1, the software
update client 1198 may respond with the download notify
message 1212. The download notify message 1210 may be
formatted in accordance with the status reporting format dis-
cussed above. An example of status codes used in the down-
load notify message 1212 is illustrated in Table 15 below.

US 9,410,712 B2

35
TABLE 15

Example download notify status codes

36

In addition to the status reporting described above, the update
notify message 1216 may include additional status informa-
tion that may be relevant to the update and/or failure to
update.

Profile Code Description
5 C. Bulk Transfer
0x00000000 0x0000 E; i‘;;”ﬂf;i :ﬁ;:;en completed, In some embodiments, it may be desirable to transfer bulk
0X0000000C 0%0020 The download could not be data files (e.g., sensor data, logs, or update images) between
completed due to faulty download nodes/services in the fabric 1000. To enable transfer of bulk
instructions. data, a separate profile or protocol may be incorporated into
0x0000000C 0x0021 The image query response 10 . .
message 1208 appears proper, but one or more profiles and made available to the nodes/services
the download or integrity in the nodes. The bulk data transfer protocol may model data
x0000000C 0x0022 ‘ﬁr;f?;i:gor?;aéllfgw download could files as collections of data with metadata attachments. In
ot be verified. certain embodiments, the data may be opaque, but the meta-
15 data may be used to determine whether to proceed with a
.)) requested file transfer.
In addition to the status reporting described above, the down- Devices participating in a bulk transfer may be generally
load notify message 1208 may include additional status infor- divided according to the bulk transfer communication and
mation that may be relevant to the download and/or failure to event creation. As illustrated in FIG. 31, each communication
download. 5o 1400 inabulk transfer includes a sender 1402 that is a node/
6. Notify Response service that sends the bulk data 1404 to a receiver 1406 that is
The software update server 1200 may respond with a notify a node/service that receives the bulk data 1404. In some
response message 1214 in response to the download notify embodiments, the receiver may send status information 1408
message 1212 or an update notify message 1216. The notify to the sender 1402 indicating a status of the bulk transfer.
response message 1214 may include the status reporting for- 25 Addltlonally, a bulk transfer event may be initiated by either
mat, as described above. For example, the notify response the sender 1402 (e.g., upload) or the receiver 1406 (e.g.,
message 1214 may include status codes as enumerated in download) as the initiator. A node/service that responds to the
Table 16 below. initiator may be referred to as the responder in the bulk data
transfer.
TABLE 16 5 Bulk data transfer may occur using either synchronous or
asynchronous modes. The mode in which the data is trans-
Example notify response status codes ferred may be determined using a variety of factors, such as
Profile Code Description the ur.lderlying protocol (.e. g., UDP or TCP) on which the bulk
data is sent. In connectionless protocols (e.g., UDP), bulk
0x00000000 0x0030 Continue - the notification is acknowledged, but 55 datamay be transferred using a synchronous mode that allows
the update has not completed, such as download one of the nodes/services (“the driver”) to control a rate at
Efet;z;els ;éll%ehﬁ ﬁtr_ecewed but update notify which the transfer proceeds. In certain embodiments, after
0x00000000 0x0000 Success - the notification is acknowledged, and the each message ina synchronous mode bulk data transfer, an
update has completed. acknowledgment may be sent before sending the next mes-
0x0000000C 0x0023 Abort - the Ht"tiﬁct%ﬁonti; aCkgoz’Vledged’ butthe sage in the bulk data transfer. The driver may be the sender
OX0000000C 0x0031 ;fertvreyr;?;nyo_ oo e dged. 1402 or the receiver 1406. In some embodiments, the driver
and the software update client 1198 is directed may toggle between an online state and an offline mode while
to retry the update by submitting another image sending messages to advance the transfer when in the online
query message 1206. state. In bulk data transfers using connection-oriented proto-
5 cols (e.g., TCP), bulk data may be transferred using an asyn-
In addition to the status reporting described above, the notify ~ chronous mode that does not use an acknowledgment before
response message 1214 may include additional status infor- sending successive messages or a single driver.
mation that may be relevant to the download, update, and/or Regardless of whether the bulk data transfer is performed
failure to download/update the software update. using a synchronous or asynchronous mode, a type of mes-
7. Update Notify 5o sage may be determined using a Message Type 1172 in the
After the update is successfully completed or failedand the ~ Application Payload 1146 according the Profile Id 1176 in the
report status flag 1280 value is 1, the software update client Application Payload. Table 18 includes an example of mes-
1198 may respond with the update notify message 1216. The sage types that may be used in relation to a bulk data transfer
update notify message 1216 may use the status reporting profile value in the Profile Id 1176.
format described above. For example, the update notify mes- 55
sage 1216 may include status codes as enumerated in Table 17 TABLE 18
below. Examples of message types for bulk data transfer profiles
TABLE 17 Message Type Message
Example update notify status codes 60 0x01 SendInit
0x02 Send Accept
Profile Code Description 0x03 SendReject
0x04 Receivelnit
0x00000000 0x0000 Success - the update has been completed. 0x05 ReceiveAccept
0x0000000C 0x0010 Client error - the update failed due to a 0x06 ReceiveReject
problem in the software update client 1198. 65 0x07 BlockQuery
0x08 Block

US 9,410,712 B2

37
TABLE 18-continued

Examples of message types for bulk data transfer profiles

Message Type Message
0x09 BlockEOF
0x0A Ack
0x0B Block EOF
0x0C Error

i. SendlInit

An embodiment of a SendInit message 1420 is illustrated
in FIG. 32. The SendInit message 1420 may include seven
fields: a transfer control field 1422, a range control field 1424,
a file designator length field 1426, a proposed max block size
field 1428, a start offset field 1430, length field 1432, and a file
designator field 1434.

The transfer control field 1422 includes a byte of data
illustrated in FIG. 33. The transfer control field includes at
least four fields: an Asynch flag 1450, an RDrive flag 1452, an
SDrive flag 1454, and a version field 1456. The Asynch flag
1450 indicates whether the proposed transfer may be per-
formed using a synchronous or an asynchronous mode. The
RDrive flag 1452 and the SDrive flag 1454 each respectively
indicates whether the receiver 1406 is capable of transferring
data with the receiver 1402 or the sender 1408 driving a
synchronous mode transfer.

The range control field 1424 includes a byte of data such as
the range control field 1424 illustrated in FIG. 34. In the
illustrated embodiment, the range control field 1424 includes
at least three fields: a BigExtent flag 1470, a start offset flag
1472, and a definite length flag 1474. The definite length flag
1474 indicates whether the transfer has a definite length. The
definite length flag 1474 indicates whether the length field
1432 is present in the Sendlnit message 1420, and the Big-
Extent flag 1470 indicates a size for the length field 1432. For
example, in some embodiments, a value of 1 in the BigExtent
flag 1470 indicates that the length field 1432 is eight bytes.
Otherwise, the length field 1432 is four bytes, when present.
If the transfer has a definite length, the start offset flag 1472
indicates whether a start offset is present. If a start offset is
present, the BigExtent flag 1470 indicates a length for the
start offset field 1430. For example, in some embodiments, a
value of 1 in the BigExtent flag 1470 indicates that the start
offset field 1430 is eight bytes. Otherwise, the start offset field
1430 is four bytes, when present.

Returning to FIG. 32, the file designator length field 1426
includes two bytes that indicate a length of the file designator
field 1434. The file designator field 1434 which is a variable
length field dependent upon the file designator length field
1426. The max block size field 1428 proposes a maximum
size of block that may be transferred in a single transfer.

The start offset field 1430, when present, has a length
indicated by the BigExtent flag 1470. The value of the start
offset field 1430 indicates a location within the file to be
transferred from which the sender 1402 may start the transfer,
essentially allowing large file transfers to be segmented into
multiple bulk transfer sessions.

The length field 1432, when present, indicates a length of
the file to be transferred if the definite length field 1474
indicates that the file has a definite length. In some embodi-
ments, if the receiver 1402 receives a final block before the
length is achieved, the receiver may consider the transfer
failed and report an error as discussed below.

The file designator field 1434 is a variable length identifier
chosen by the sender 1402 to identify the file to be sent. In
some embodiments, the sender 1402 and the receiver 1406

10

15

20

25

30

35

40

45

50

55

60

65

38

may negotiate the identifier for the file prior to transmittal. In
other embodiments, the receiver 1406 may use metadata
along with the file designator field 1434 to determine whether
to accept the transfer and how to handle the data. The length
of'the file designator field 1434 may be determined from the
file designator length field 1426. In some embodiments, the
SendInit message 1420 may also include a metadata field
1480 of a variable length encoded in a TLV format. The
metadata field 1480 enables the initiator to send additional
information, such as application-specific information about
the file to be transferred. In some embodiments, the metadata
field 1480 may be used to avoid negotiating the file designator
field 1434 prior to the bulk data transfer.

ii. SendAccept

A send accept message is transmitted from the responder to
indicate the transfer mode chosen for the transfer. An embodi-
ment of a SendAccept message 1500 is presented in FIG. 35.
The SendAccept message 1500 includes a transfer control
field 1502 similar to the transfer control field 1422 of the
SendInit message 1420. However, in some embodiments,
only the RDrive flag 1452 or the SDrive 1454 may have a
nonzero value in the transfer control field 1502 to identify the
sender 1402 or the receiver 1406 as the driver of a synchro-
nous mode transfer. The SendAccept message 1500 also
includes a max block size field 1504 that indicates a maxi-
mum block size for the transfer. The block size field 1504 may
be equal to the value of the max block field 1428 of the
SendInit message 1420, but the value of the max block size
field 1504 may be smaller than the value proposed in the max
block field 1428. Finally, the Send Accept message 1500 may
include a metadata field 1506 that indicates information that
the receiver 1506 may pass to the sender 1402 about the
transfer.

iii. SendReject

When the receiver 1206 rejects a transfer after a SendInit
message, the receiver 1206 may send a SendReject message
that indicates that one or more issues exist regarding the bulk
data transfer between the sender 1202 and the receiver 1206.
The send reject message may be formatted according to the
status reporting format described above and illustrated in
FIG. 36. A send reject frame 1520 may include a status code
field 1522 that includes two bytes that indicate a reason for
rejecting the transfer. The status code field 1522 may be
decoded using values similar to those enumerated as indi-
cated in the Table 19 below.

TABLE 19

Example status codes for send reject message
Status Code Description
0x0020 Transfer method not supported
0x0021 File designator unknown
0x0022 Start offset not supported
0x0011 Length required
0x0012 Length too large
0x002F Unknown error

In some embodiments, the send reject message 1520 may
include a next status field 1524. The next status field 1524,
when present, may be formatted and encoded as discussed
above in regard to the next status field 1188 of a status report
frame. In certain embodiments, the send reject message 1520
may include an additional information field 1526. The addi-
tional information field 1526, when present, may store infor-
mation about an additional status and may be encoded using
the TLV format discussed above.

US 9,410,712 B2

39

iv. Receivelnit

A Receivelnit message may be transmitted by the receiver
1206 as the initiator. The Receivelnit message may be for-
matted and encoded similar to the Sendlnit message 1480
illustrated in FIG. 32, but the BigExtent field 1470 may be
referred to as a maximum length field that specifies the maxi-
mum file size that the receiver 1206 can handle.

v. ReceiveAccept

When the sender 1202 receives a Receivelnit message, the
sender 1202 may respond with a ReceiveAccept message.
The Receive Accept message may be formatted and encoded
as the ReceiveAccept message 1540 illustrated in FIG. 37.
The Receive Accept message 1540 may include four fields: a
transfer control field 1542, a range control field 1544, a max
block size field 1546, and sometimes a length field 1548. The
ReceiveAccept message 1540 may be formatted similar to the
SendAccept message 1502 of FIG. 35 with the second byte
indicating the range control field 1544. Furthermore, the
range control field 1544 may be formatted and encoded using
the same methods discussed above regarding the range con-
trol field 1424 of FIG. 34.

vi. ReceiveReject

If'the sender 1202 encounters an issue with transferring the
file to the receiver 1206, the sender 1202 may send a Receiv-
eReject message formatted and encoded similar to a Sen-
dReject message 48 using the status reporting format, both
discussed above. However, the status code field 1522 may be
encoded/decoded using values similar to those enumerated as
indicated in the Table 20 below.

TABLE 20

Example status codes for receive reject message

Status Code Description

0x0020 Transfer method not supported
0x0021 File designator unknown
0x0022 Start offset not supported
0x0013 Length too short

0x002F Unknown error

vii. BlockQuery

A BlockQuery message may be sent by a driving receiver
1202 in a synchronous mode bulk data transfer to request the
next block of data. A BlockQuery impliedly acknowledges
receipt of a previous block of data if not explicit Acknowl-
edgement has been sent. In embodiments using asynchronous
transfers, a BlockQuery message may be omitted from the
transmission process.

viii. Block

Blocks of data transmitted in a bulk data transfer may
include any length greater than 0 and less than a max block
size agreed upon by the sender 1202 and the receiver 1206.

ix. BlockEOF

A final block in a data transfer may be presented as a Block
end of file (BlockEOF). The BlockEOF may have a length
between 0 and the max block size. If the receiver 1206 finds
a discrepancy between a pre-negotiated file size (e.g., length
field 1432) and the amount of data actually transferred, the
receiver 1206 may send an Error message indicating the fail-
ure, as discussed below.

x. Ack

If the sender 1202 is driving a synchronous mode transfer,
the sender 1202 may wait until receiving an acknowledgment
(Ack) after sending a Block before sending the next Block. If
the receiver is driving a synchronous mode transfer, the
receiver 1206 may send either an explicit Ack or a Block-

10

15

20

25

30

35

40

45

50

55

60

40

Query to acknowledge receipt of the previous block. Further-
more, in asynchronous mode bulk transfers, the Ack message
may be omitted from the transmission process altogether.

xi. AckEOF

An acknowledgement of an end of file (AckEOF) may be
sent in bulk transfers sent in synchronous mode or asynchro-
nous mode. Using the AckEOF the receiver 1206 indicates
that all data in the transfer has been received and signals the
end of the bulk data transfer session.

xii. Error

In the occurrence of certain issues in the communication,
the sender 1202 or the receiver 1206 may send an error
message to prematurely end the bulk data transfer session.
Error messages may be formatted and encoded according to
the status reporting format discussed above. For example, an
error message may be formatted similar to the SendReject
frame 1520 of FIG. 36. However, the status codes may be
encoded/decoded with values including and/or similar to
those enumerated in Table 21 below.

TABLE 21

Example status codes for an error message
in a bulk data transfer profile

Status code Description
0x001F Transfer failed unknown error
0x0011 Overflow error

D. Data Management Profile

The data management profile (WDM) provides a method
fornodes to view, share and update node-resident information
between each other and/or a service. Any device viewing or
requesting the data may be referred to as a client, and any
device storing the information locally that is sent out may be
referred to as a publisher. For example, a thermostat node,
acting as a client, may view and update a heat state from on to
off in a radiator control node as a publisher. The data man-
agement profile includes message types, status values, and
data tags each with a corresponding schema. As discussed
previously in relation to the general message format, each
message may include a profile ID and associated message
type. For example, logically a profile ID and message type
(e.g., [<KWDMprofile>, <view request>]) indicates that the
data management profile is called with the specific message
type of a view request. Moreover, the view request message
may also include a path list [[. . . {{<radiator profile>}
{<heat state>}]] that indicates that the data being viewed in
the heat state of the radiator profile.

As previously discussed, a class of interactions between
nodes on a fabric, e.g. remote sensing and control, configu-
ration management and so on, may be described as data
management. In these and many other cases, a particular node
“owns” a data set and other nodes may inquire about its
values, submit updates and/or subscribe to notifications when
values within the data set change. Furthermore, a number of
protocols that go beyond simple data management, e.g. soft-
ware update or data logging, often have parameter sets that
control their operation or encapsulate their state and the man-
agement and sharing of these parameters may properly be
viewed as data management as well.

Seen from this point of view, a fabric node may appear as
an unordered collection of application-specific domains, for-
mally known as profiles, e.g. for settings synchronization,
software update, HVAC control and so on. As previously
discussed, each profile is identified by a 32-bit vendor-spe-
cific profile identifier 1600, as illustrated in FIG. 38.

US 9,410,712 B2

41

A 16-bit profile number subfield 1602 of the profile iden-
tifier 1600 is assigned by a vendor for the device. In some
embodiments, a 16-bit vendor identifier subfield 1604 of the
profile identifier 1600 may be assigned by a central arbiter.
Moreover, in some embodiments, the central arbiter may be a
manufacturer with its own vendor ID is 0x235A. In some
embodiments, the vendor identifier 0 may be used to desig-
nate “Core” profiles intended for common usage. In some
embodiments, the profile identifier OXFFFFFFFF may be
reserved for a “profile identifier unspecified” error code. A
profile may define 3 things: 1) A set of messages that, again by
convention, imply protocols, which are the basis of inter-node
exchanges over the fabric; 2) a set of profile-specific status
codes; and 3) a schema for profile-related data.

WDM frames, generally speaking, address and/or contain
profile data for one or more profiles and the representation of
that data may be entirely determined by the profile of interest.
For example, FIG. 39 illustrates a WDM frame 1606. The
profile identifier 1602 in the exchange header identifies the
frame as belonging to the data management protocol, but the
profile identifiers in the various elements that make up the
body of the message are likely to belong to some other profile,
e.g. “HVAC control”. In this case the WDM profile is being
used to manage and communicate HVAC control data on
behalf of other profiles resident on devices in the fabric.

The disposition and format of actual data on a fabric node
may vary widely between instances of different profiles being
managed. To give a few examples, a piece of data used in the
operation of a profile may be readily available in RAM, but it
may also be in some form of persistent storage that requires
special access. In some embodiments, the data may be under
the control of a different thread or process and may include a
multi-step process to retrieve, or it may be read from external
hardware and never stored at all. In order to make sense of
disparate and differently accessible data, a schema is defined
whereby data may be organized, understood and published
for external access without regard to its internal representa-
tion.

For example, the data may be formatted using the TLV
format discussed above. In other words, data may be repre-
sented as a hierarchical structure of tag-value pairs possibly
incorporating ordered lists (arrays) with elements of arbitrary
type; a representation for null and empty data items; the
ability to handle a variety of primitive data types, such as
Boolean values, signed and unsigned integers of various
lengths, single and double-precision floating point values,
byte strings, and UTF-8 strings; and representation of paths
that provide access to particular data items or subtrees within
the hierarchy.

In some embodiments, the over-the-air (OTA) representa-
tion of profile data is in the TLV format. The internal format
may be TLV in cases where that is appropriate or it may be
something completely different depending on constraints
imposed by the platform, profiles, and/or applications. How-
ever, in some embodiments, the internal format may be effi-
ciently converted to the OTA format and vice-versa.

a. WDM Architecture

As shown in FIG. 40, a data management entity (DME)
1610 has a layered architecture to separate data representa-
tion from communication. Application code 1612 communi-
cates with the DME 1610 using a set of general-purpose
primitives. The upper sublayer of the DME, the data manager
1614, makes few assumptions about the underlying medium
of'exchange. As a result, the DME 1610 could be adapted to
participate in data management exchanges that take place
across IPC channels or other media. The data manager 1614
sublayer is responsible for data management proper. For

10

15

20

25

30

35

40

45

50

55

60

65

42

example, the data manager 1614 sublayer may maintain an
internal model for the data of interest; provide access to data
based on a set of predefined paths, established by convention
as part of profile definition; track changes and resolve con-
flicts that may arise between multiple updaters of the same
data set; link data paths to methods for merging data from
disparate sources (e.g. in the case of a request to view); and/or
link data paths to methods for disseminating changes to their
disparate destinations (e.g. in the case of a request to update).

The DME 1610 communicates via its lower sublayer, a
protocol engine 1616. The protocol engine 1616 sublayer
may bind requests to a particular node or service endpoint,
maintenance—including creation, disposal and cancella-
tion—of transactions covering the lifecycle of an OTA data
management operation (e.g., an update), establish and main-
tain listeners in the case where a device may listen for unso-
licited requests (e.g., view requests or receiving unsolicited
notifications as a result of a subscription request), parse and
pack WDM frames; and/or interaction with the fabric
exchange manager, including the creation and disposal of
exchange contexts and the transmission and receipt of frames.

b. Functions

The DME 1610 handles data management service on
behalf ofhigher layers generally using a fabric as a medium of
exchange. Services offered by the DME 1610 may include:
publishing (e.g., setting up a node or service endpoint, a
publisher) to “own” and manage a particular data set and
accept requests to view it, update it and subscribe to notifica-
tions when that data is changed; binding to a single remote
node or service endpoint as the publisher of a data set of
interest or as the default client of a particular publisher; view-
ing (e.g., asking a publisher for a snapshot of the data refer-
enced by some set of paths in the data set under its control);
updating (e.g., requesting a modification to data under control
of a publisher); and/or subscribing to notifications from a
publisher in the event that data under the control of that
publisher changes.

i. Definitions

A path, P, is a pair, {p[e, . . . ,]}, where p is a profile
identifier and the sequence [e, . . . ¢,] is an ordered set of path
elements which, taken together, describe a path through the
hierarchical structure defined by the profile schema in a way
that is analogous to the way a path expression in Unix defines
a path through the file system. In some cases, there may be
more than one instance of a profile on a node and in these
cases the profile identifiers are assigned an instance identifier,
1, written p,. Note here that, as shown in FIG. 39 above, the
profile identifier in a path may be a profile other than the
identifier of the data management profile. Instead, it may be
the identifier for a profile that defines a schema wherein the
sequence of elements [e, . . . ¢,] may be used to uniquely
identify a particular piece of data. In this sense the profile
identifier acts as the “path root” for all paths defined for a
particular profile.

A path list, L, is an array of paths, written [P, ... P,] anda
data list is a list of triples [{Py:vy: X} - - . {P:v,:X ,}] where
the data items [X,, . . . X,,] represent the data located at the
places in the schema instance indicated by the paths [P, . . .
P,]. We call X, the “terminal” of P,. The [v, . .. v,] are data
versions associated with the terminals [X, . . . X,]. The ver-
sion may be omitted in some case and the element will then be
written {P;::X,}.

ii. Primitives

Operations may be described interms of a set of primitives,
which may be mapped onto function calls and callbacks,
events queued between threads, RPC calls and so on. The
DME primitives are discussed below. Each primitive has up to

US 9,410,712 B2

43

4 variants: 1) request used to request a DME operation (e.g.
view), 2) an indication used to communicate an internal event

44
TABLE 23-continued

(e.g. the arrival of a view request), a response used to signal DME frame
the completion of processing for an indication, and a confir- -
. . N) name description
mation used to signal the completion of processing for a 5
request. If a primitive has a particular variant, an indication wishes to receive a data list [{Pg:Xo} . . - {P,::X,,}]
for the corresponding variant is shown to indicate that addi- constituting a snapshot of the terminals of L in the data
. [. set under management by a remote node or service
tional detail is provided below. endpoint.
view response A view response frame, containing the requested data
TABLE 22 10 list, is returned to the requestor in the case where a
view request frame was successfully received and
DME primitives processed.
subscribe request A subscribe request frame the same content as a view
name request indication response confirm request, i.e. a path list L. The difference in semantics
is that, in addition to requesting a snapshot of the data
DME-View X X X X 15 at the terminals of L, the requestor also expresses a
DME-Subsecribe X X X X wish to receive notifications when that data changes.
DME-Update X X X X subscribe A subscribe response frame, containing both the
DME-CancelTransaction X X response requested data list and a topic ID chosen by the
DME-CancelSubscription X X X responder, is sent in response to a subscribe request to
DME-Bind X X indicate that the subscription has been successfully
DME-BeginPublishing X X established.
DME-EndPublishing X X 20 cancel A cancel subscription request frame, containing the
DME-BeginSubscription X X subscription topic ID of the subscription to be canceled, is sent to
DME-Notify X X X request request that the subscription be canceled and all state
associated with it removed.
update request An update request frame, containing a data list, is sent
11i. DME Frames to request a modification to data under the

When DME operations pass between nodes or service end- 2 i management of a remote node or service endpoint.

. . . notify request A notify request frame, containing a topic ID and a
ponts, they may be sent as fal?nc frames. The fabric data data list, in which each item is required to contain the
management frames are shown in Table 23. version component, is sent to inform a node or service

endpoint that data of interest to it has changed.
TABLE 23 30
DME frames Data management exchanges may also include status report
frames described in reference to the status report profile.
name description iv. DME Roles
view request A view request frame, containing a path list, L = There are four defined roles under the data management
[Py - . P,], is sent when a node or service endpoint 35 profile. These roles, along with the primitives they implement
and the expected behavior appear in Table 24.
TABLE 24
WDM roles
name primitives expected behavior
viewer DME-View.request A viewer may implement the
DME-View.confirm client portion of the view
DME-CancelTransaction.request transaction and may be able to
DME-CancelTransaction.confirm cancel a transaction that it has
DME-Bind.request begun.
DME-Bind.confirm A viewer may implement the
bind transaction.
updater DME-Update.request An updater may implement the
DME-Update.confirm client portion of the updater
DME-CancelTransaction.request transaction and may be able to
DME-CancelTransaction.confirm cancel a transaction that it has
DME-Bind.request begun.
DME-Bind.confirm An updater may implement the
bind transaction.
publisher DME-View.indication A publisher may implement the

DME-View.response
DME-Update.indication
DME-Update.response
DME-Subscribe.indication
DME-Subscribe.response
DME-CancelTransaction.request
DME-CancelTransaction.confirm
DME-CancelSubscription.indication
DME-Bind.request
DME-Bind.confirm
DME-BeginPublishing.request
DME-BeginPublishing.confirm
DME-BeginSubscription.request
DME-BeginSubscription.confirm
DME-Notify.request

client portion of the notify
transaction and may be able to
cancel a transaction that it has
begun.

A publisher may implement the
begin publishing transaction.

A publisher may implement the
begin subscription transaction.
A publisher may implement the
server portion of the view
transaction.

A publisher may implement the
server portion of the update
transaction.

A publisher may implement the

US 9,410,712 B2

45
TABLE 24-continued

46

WDM roles

name primitives expected behavior

DME-Notify.confirm
transaction.

server portion of the subscribe

A publisher may implement the

server portion of the cancel

subscription transaction.
A updater may implement the

bind transaction.
subscriber DME-Subscribe.request
DME-Subscribe.confirm
DME-CancelTransaction.request
DME-CancelTransaction.confirm
DME-CancelSubscription.request
DME-CancelSubscription.indication
DME-CancelSubscription. confirm
DME-Bind.request
DME-Bind.confirm
DME-Notify.indication

transaction.

transaction.

A subscriber may implement the
server portion of the notify

If a subscriber implements the
client side of any transaction it
may also implement the cancel
transaction transaction.

A subscriber may implement the
client side of the subscribe

A subscriber may implement the

client side of the cancel

subscription transaction.
A subscriber may implement the

bind transaction.

The given roles may overlap such that, for example, an
updater may also be a viewer of a particular remote schema
instance and the publisher of this data may also be an updater.

v. Binding Function

For a variety of applications, a DME instance may have a
single peer node or service endpoint by default. Inthese cases,
the instance may be bound to that peer and subsequent trans-
actions may use the node identifier of that peer as a destina-
tion. FIG. 41 illustrates a binding transaction. As shown in
FIG. 41, a next higher layer (NHL) 1620 issues a DME-
Bind.request 1622 primitive containing the 64-bit peer node
identifier (e.g., ULA) of interest to a DME 1626. The node
identifier is installed as the value of the aPeerNodeld attribute
of the DME 1626. The DME 1626 then responds with a
DME-Bind.confirm message 1628. To remove the binding,
the NHL 1620 replaces the value of aPeerNodeld in a DME-
Based.request 1630 with the value of 0, meaning “no bound
peer.” The DME-Bind.confirm 1632 primitive is issued when
the binding operation is complete and contains a status of
success.

vi. Publishing and Subscription Functions

A node or service endpoint may set itself up as a publisher
for a certain data set as long as the data can be represented.
Devices with widely varying capabilities may become pub-
lishers, and the list of features associated with publishing may
be designed to scale with the number of publishers or func-
tions thereof.

1. Broadcast Publishing

In the simplest form of publishing, a publisher begins pub-
lishing or establishes one or more subscriptions, and then
simply transmits the notification request frames via multicast
as shown in FIG. 42. To establish itself as a broadcast pub-
lisher, an NHL 1640 in a request 1642 clears the DME 1644
default binding to 0 indicating that that the default destination
for outgoing frames is a multicast address. The DME 1644
confirms the request in a confirmation message 1646. The
NHL 1640 then begins publishing by issuing a DME-Begin-
Publishing.request 1648 primitive to the DME 1644. The
results of this operation are communicated via the DME-
BeginPublishing.confirm 1650 primitive. If the Status con-
tained in the DME-BeginPublishing.confirm 1650 primitive
has a value indicating success, then the NHL 1640 may estab-
lish one or more subscriptions in the DME 1644 using a
subscription request 1652. Once this is done and the resulting

25

30

35

40

45

50

55

60

65

DME-BeginSubscription.confirm 1654 primitives contain a
status indicating success, the NHL 1640 may begin to issue
change notification requests 1656. In some embodiments,
when the default binding is set to 0, notifications are sent to a
multicast address and interested parties on the fabric may
receive them. In some embodiments, when issuing a notifi-
cation, a reply is not expected from the recipient, and the
DME 1644 may issue a DME-Notify.confirm 1658 primitive
reflecting the status of the attempt on the part of the lower
stack to transmit the frame.

The criteria whereby a publisher decides to issue a notifi-
cation may be application-specific. For example, if the data in
question is continuously and incrementally variable, a thresh-
olding or timed-update strategy may be used. In the case of
device configuration data, on the other hand, the call for a
notification may occur whenever the data changes.

Publishing may be halted by issuing the DME-EndPublish-
ing.request 1660 primitive. The DME 1644 waits until the
states involved in publishing are cleaned up and, in particular,
all active transactions have been disposed of, before issuing
the corresponding DME_EndPublishing.confirm 1662
primitive.

2. Peer Publishing

A variant of broadcast publishing involves a single peer
node or service endpoint may be called “peer publishing”,
which is shown in FIG. 43. The main differences between
broadcast publishing and peer publishing are: 1) the DME is
bound to a specific peer node or service endpoint, and 2) by
default, a status response is requested for each notification.

3. Dynamic Subscription

Of course, not all publishers may broadcast or peer publish.
Some nodes and service endpoints may maintain subscrip-
tions in the name of multiple devices and may deal with
devices that enter and leave the fabric. In some embodiments,
it may also be important to the subscriber to know whether its
notifications have been received. In cases like this, it makes
sense to have the subscribers explicitly request a subscription.
As shown in FIG. 44, after a publisher 1700 begins publish-
ing, a subscriber 1702 may request a subscription by issuing
a DME-Subscribe.request 1704 primitive. On receipt of the
DME-Subscribe.request 1704 primitive, the DME 1706 of
the subscriber 1700 may establish a transaction with the iden-
tifier given by the value of the Transactionld parameter of the
DME-Subscribe.request 1704 primitive. The DME 1706 may

US 9,410,712 B2

47

then format a subscribe request frame 1707. The subscriber
1700 either binds to the 64-bit node identifier of the publisher
or includes the 64-bit node identifier of the publisher as the
value of the Destinationld parameter of the DME-Sub-
scribe.request 1708. This node identifier may be used as the
intended destination of the subscribe request frame 1707.

The values of the topic identifier and path list fields of the
subscribe request frame 1707 may reflect the values of the
Topicld and PathList parameters of the DME-Subscribe.re-
quest 1704 primitive. Once the subscribe request frame 1707
has been formatted, the protocol engine sublayer of the DME
1706 may transmit it via a fabric exchange layer. If the Tim-
eout parameter of the DME-Subscribe.request primitive has a
non-zero value then the value may be used to set the expected
response timeout for the fabric exchange.

Upon receipt of subscribe request frame 1707 from a fabric
exchange manager in the publisher, the DME 1706 of the
publishing node attempts to establish the requested subscrip-
tion. If the topic identifier field of the subscribe request frame
1707 has a non-zero value, then the DME 1706 may attempt
to match the value of that field with the identifier of an
existing topic under management. If a matching topic is
found, the 64-bitnode identifier of the sender (e.g., subscriber
1702) of the subscribe request frame 1707 may be added to
the list of subscribers for that topic.

If the topic identifier field of the subscribe request frame
1707 has a value ot 0, indicating an undefined topic, a path list
of' non-zero length may be supplied. This path list is checked
against the existing list of topics under management to deter-
mine if there is an existing topic with a matching path list. If
a matching topic is found, the 64-bit node identifier of the
sender (e.g., subscriber 1702) of the subscribe request frame
1707 is to be added to the list of subscribers for the topic. The
DME 1706 then issues a DME-Subscribe.indication 1708
primitive where the Topicld and Pathl.ist parameters reflect
the values selected above and the value of the ResponseCtx
parameter may be the fabric exchange context object gener-
ated by the exchange manager and containing all the infor-
mation required to send a response

If no existing topic matches the supplied path list field, the
DME 1706 may ensure that each entry in the path list field of
the subscribe request frame 1707 is a valid path. If all path list
items are valid, the DME 1706 issues a DME-Subscribe.indi-
cation 1708 primitive where the value of the Topicld param-
eter is 0, indicating an undefined topic, and the value of the
PathList parameter is the list of paths present in the path list
field of the subscribe request frame 1707. The NHL 1710 of
the publisher 1700 may pick a topic identifier for the
requested subscription and establish it using the DME-Begin-
Subscription.request primitive where the value of the Sub-
scriber parameter is to be the 64-bit node identifier of the
requesting node derived from the ResponseCtx parameter of
the DME-Subscribe.indication 1708 primitive.

Once the subscription has been established and the NHL
1710 has marshalled the data to be used in responding to the
DME-Subscribe.indication 1708, the NHL 170 issues a
DME-Subscribe.response 1712 primitive to the DME. Then,
the response 1713 is relayed to a DME 1714 of the subscriber
1702. On receipt of a DME-Subscribe.confirm 1716 primi-
tive, an NHL 1718 of the subscriber disseminates the data list
and may record the topic ID contained in the primitive. At this
point, the subscription is established in the subscriber 1702.
Thereafter, at the discretion of the NHL 1710, the publisher
1700 may issue DME-Notify.request 1718 primitives in
response to changes in the data of interest as shown in the
previous examples. The transaction uses reliable unicast
transmission and a status response may be used.

On receipt of the DME-Notify.request 1718 primitive, the
DME 1706 of the publisher 1700 determines the list of sub-
scribers, if any, with an interest in the Datal.ist parameter of

15

30

45

48

the DME Notify.request 1718 primitive. If the Topicld param-
eter has been provided then that identifier may be compared
against the topic identifier in each subscription and the asso-
ciated node identifier added to the list of interested subscrib-
ers in the case of a match. If a topic identifier has not been
supplied, for each data list item given in the Datal.ist param-
eter, the path component is to be compared against each
element of the path list given in the subscription. If a match is
found, the associated node identifier is to be added to the list
of interested subscribers. In some embodiments, the pub-
lisher DME 1706 may exclude a subscriber 1702 from the list
of interested subscribers if it can be determined that the sub-
scriber has the most up-to-date version of the data of interest.

Ifitis discovered that a particular subscriber has an interest
in the Datalist provided, the DME formats a notify request
frame 1721 where the 64-bit node identifier of the interested
subscriber may be used as the destination identifier for the
frame. The data list field of the notify request frame 1721
reflects the value of the Datal.ist parameter of the DME-
Notify.request 1718 primitive. The publisher DME 1706 may
remove items that it determines not to be of interest to the
given subscriber 1702. Once the notify request frame 1721
has been formatted, it is sent via the fabric exchange manager.
The process may be repeated for every interested subscriber
identified in the subscriber list of the DME.

The DME 1706 may issue a DME-Notify.confirm 1720
primitive. The Status parameter may be a status report indi-
cating the success or failure of the transmission attempt. The
value of the Transactionld parameter may be the 16-bit iden-
tifier of the now-completed WDM transaction. On receipt of
a DME-Notify.confirm primitive, the NHL of the notifier is
informed of the success or failure of a previous request and
the completion of the corresponding transaction. On receipt
of the notify request frame 1721, the DME 1714 of the sub-
scribing device 1718 issues a DME-Notify.indication 1722
primitive to the NHL. The values of the Topicld and Datalist
parameters reflect the corresponding field values form the
notify request frame 1721.

On receipt of the DME-Notify.indication 1722 primitive,
the NHL 1718 may begin the process of disseminating the
data for each of the items in the Datal.ist parameter. The
subscriber 1702 may cancel the subscription by initiating a
DME-CancelSubscription.request 1724 primitive as shown
in FIG. 45. The DME 1706 of the publisher receives the
cancellation request 1724 and sends the NHL 1710 an cancel
subscription indication 1726. The DME 1714 of the sub-
scriber 1702 may send the NHL 1718 of the subscriber a
cancel subscription confirmation 1728 upon successful trans-
mittal for the cancel subscription request 1724.

4. Topic Identifier

In the above cases, the publisher is, in principle, respon-
sible for choosing a topic identifier for the subscription. The
topic identifier is used in subsequent management operations
around the subscription and may be used as a shorthand for
the path list associated with the subscription (e.g., in the case
of a DME-View.request). For a subscriber, the pair {t:N,}
where t is a topic ID and N, is the node ID of the publisher
should uniquely identify a subscribed data set and likewise,
for apublisher, the pair {t:N_}, where N_is the Node ID of the
subscriber, uniquely identifies a subscription.

Topic IDs may, by convention, be chosen to have particular
semantics so that, for example, an HVAC controller may
define a topic called something like an HVAC State to capture
whatever data in resident on that device was involved in
HVAC control. Thus, in some embodiments, devices of a
similar type (e.g., HVAC controllers) may use the same topic
1D to simplify service discovery.

In the case of dynamic subscriptions, the subscriber may
include a pre-agreed topic identifier in the subscribe request
frame 1707 as a “shorthand” for the list of paths governed by

US 9,410,712 B2

49

intended subscription, or it may simply send a path list requir-
ing the publisher to choose a topic identifier. The publisher
may use a predefined topic identifier, if an applicable identi-
fier is available, but the publisher may not give out that same
topic 1D to the same subscriber until the previous instance of
it has been canceled. Topic IDs in this case may be sequenced,
chosen at random (with duplicate checking), or another suit-
able scheme. In some embodiments, the topic identifier with
the value 0 is reserved for an unspecified topic.

vii. Viewing Function

FIG. 46 illustrates a view transaction 1800. On receipt of a
DME-View.request 1802 primitive, the DME 1714 of the
viewer 1702 establishes a transaction with the identifier given
by the value of the Transactionld parameter of the DME-
View.request 1802 primitive. The DME 1714 of the viewer
1702 then formats a view request frame 1803. If NHL 1718
has supplied a Destinationld parameter, the value of that
parameter may be used as the identifier of the destination
node. If no such parameter has been supplied, and a default
binding has previously been established use the DME-Bin-
d.request primitive, the node identifier found in that binding
may be used as the identifier of the destination node. View
request frames may also be transmitted via multicast in the
case where the default binding is set to a value of 0.

If the Topicld parameter of the DME-View.request 1802
primitive has been supplied, the DME 1714 may use fabric
TLV encoding of the list of paths corresponding to that topic
identifier as the value of the path list field of the outgoing view
request.

If'the Topicld parameter has not been supplied, the PathList
parameter may be supplied, and the value of the path list field
of'the view request frame 1803 may be the fabric TLV repre-
sentation of the PathList parameter. Once the view request
frame 1803 has been formatted, the protocol engine sublayer
of the DME 1714 may transmit it via the fabric exchange
layer. If the Timeout parameter of the DME-View.request
1802 primitive has a non-zero value, the value may be used to
set the expected response timeout for the fabric exchange.

On receipt of the view request frame 1803, the DME 1706
of'the publisher 1700 may issue a DME-View.indication 1804
primitive to the NHL 1710. The value of the ResponseCtx
parameter of the DME-View.indication 1804 primitive may
be the fabric exchange context object generated by the
exchange manager and containing the information required to
send a response. The PathList parameter of the DME-
View.indication 1804 primitive may reflect the value of the
path list field of the received view request frame 1803.

Onreceipt of the DME-View.indication 1804 primitive, the
NHL 1710 begins the process of marshalling data for each of
the paths contained in the PathList parameter. Once marshal-
ling has been completed, the NHL 1710 issues a DME-Vie-
w.response 1806 primitive. The Status parameter of the
DME-View.response 1806 primitive reflects the status of the
attempt to marshall results and, if the attempt is successful,
the Datal.ist parameter is supplied and has, as a value, a data
list containing terminal values for all the paths in the PathList
parameter of the corresponding DME-View.indication 1804.
The ResponseCtx parameter of the DME-View.response
1806 primitive has the same value as that of the corresponding
DME-View.indication 1804.

On receipt of the DME-View.response 1806 primitive, if
the value of the Status parameter has a value denoting suc-
cess, the DME 1706 may format and transmit a view response
frame 1808 containing a fabric TLV encoding of the data list
that is the value of the in the Datal.ist parameter of the
DEM-View.response 1806 primitive. The publisher provides
the most recent version number for each data list item. On
receipt of this view response frame 1808, the DME 1714 of

10

35

40

45

50

the viewer 1718 issues a DME-View.confirm 1810 primitive.
The Status parameter of the DME-View.confirm 1810 primi-
tive may be a status report with a status code value denoting
success. The Datalist parameter of the DME-View.confirm
1810 primitive reflects the value of the data list field of the
view response frame 1808.

If the value of the Status parameter denotes an outcome
other than success, the DME 1706 may format and transmit a
status report frame 1812, as previously described. On receipt
of'this status report, DME 1714 of the viewer issues a DME-
View.confirm 1810 primitive. The value of the Responderld
parameter of the DME-View.confirm 1810 primitive may
include the 64-bit node identifier of the publisher. The Status
parameter may be a decoding of the status report frame. In
some embodiments, the Datal ist parameter may be omitted.
The value of the Transactionld parameter may be the 16-bit
identifier of the now-completed WDM transaction. In either
case, the transmission, via the fabric exchange layer, may be
performed using the information in the ResponseCtx param-
eter.

On receipt of a DME-View.confirm primitive, the NHL of
the viewer is informed of the success or failure of a previous
request. In the case of success, the version and value of the
data requested.

viii. Update Transaction

An update transaction is shown in FIG. 47. On receipt of a
DME-Update.request 1820 primitive from an NHL 1822 of
an updater device 1824, a DME 1826 of the updater 1824
establishes a transaction with the identifier given by the value
of the Transactionld parameter of the DME-Update.request
1820 primitive. The DME 1826 of the updater 1824 then
formats and transmits an update request frame 1828. If NHL.
1822 has supplied a Destinationld parameter then the value of
that parameter may be used as the identifier of the destination
node. If no such parameter has been supplied, and a default
binding has previously been established using the DME-
Bind.request primitive, the node identifier found in that bind-
ing is used as the identifier of the destination node. Update
request frames 1828 may also be transmitted via multicast in
the case where the default binding has a value of 0. The value
of the data list field of the update request frame may be the
fabric TLV representation of the Datal.ist parameter. The
DME 1826 of the updater 1824 may include the most recent
known version for each item in the outgoing data list.

Once the update request frame 1828 has been formatted,
the protocol engine sublayer of the DME 1826 transmits it via
the fabric exchange layer. If the Timeout parameter of the
DME-Update.request 1820 primitive has a non-zero value
then the value may be used to set the expected response
timeout for the fabric exchange. On receipt of an update
request frame, the DME 1706 of the publisher 1700 issues a
DME-Update.indication 1830 primitive to the NHL 1710.
The value of the ResponseCtx parameter of the DME-Up-
date.indication 1830 primitive is the fabric exchange context
object generated by the exchange manager and containing the
information used to send a response. The Datal ist parameter
of the DME-Update.indication 1830 primitive reflects the
value of the data list field of the received update request frame
1828.

On receipt of the DME-Update.indication primitive 1830,
the NHL 1710 begins the process of disseminating the data
for each of the items in the Datalist parameter. Once the
dissemination has been completed, the NHL issues a DME-
Update.response 1832 primitive. The Status parameter of the
DME-Update.response 1832 primitive reflects the status of
the attempt. The ResponseCtx parameter of the DME-Upda-
te.response 1832 primitive has the same value as that of the
corresponding DME-Update.indication 1830. The DME
1706 then formats and transmits a status report frame 1834.

US 9,410,712 B2

51

On receipt of a status report, DME 1826 of the updater 1824
issues a DME-Update.confirm 1836 primitive. The value of
the Responderld parameter of the DME-Update.confirm
1836 primitive the 64-bit node identifier of the publisher
1700. The Status parameter may be a decoding of the status
report frame 1834. The value of the Transactionld parameter
may be the 16-bit identifier of the now-completed WDM
transaction.

On receipt of a DME-Update.confirm 1836 primitive, the
NHL 1822 of the updater is informed of the success or failure
of'a previous request and the completion of the corresponding
transaction.

1. Concurrent Updates

In an operating environment where multiple entities have
an interest in a particular data set, there is the possibility that
multiple entities will submit updates concurrently. FIG. 48
below shows an example of this in which subscribers 1900
and 1902 also have an interest in updating information on a
publisher 1904. Updates may, in principle, be requested by a
variety of entities, including the publisher 1904 itself, and
might be requested “out of band” (e.g., not using WDM).

In the initial state, the data set of interest at path P is
{P:a:X} (e.g., the terminal of P has the value X and the current

10

15

20

52

version is a). On arrival of an update request 1906 from
subscriber/updater 1, the DME of the publisher 1904 sets in
motion the process of merging the data in the update request
as described later. On arrival of the second update request
1908 from subscriber/updater 2 1902, the DME of the pub-
lisher 1904, noting that the path in question is currently being
updated, queues the incoming update and waits until the
currently running update is finished and a status report 1910
is issued (e.g., the NHL issues the DME-Update.response
primitive). After the update for the first update request 1906 is
finished, the DME of'the publisher 1904 processes the second
update from the second update request 1908 and issues a
status report 1912. In this way updates are serialized on the
publisher. When the data in the second update has been
merged and after the status report 1912 detailing the success
or failure of the update request has been issued, the DME also
issues a notify request frame 1914 to both entities informing
them of the results of the merge and receives notify responses
1916 and 1918.

ix. Failure Cases

Common failure cases, along with the contents of the status
report produced, may be represented according to the Table
25. Note that the error code, in cases where one is available,
may be attached to the status report as meta-data.

TABLE 25

Failure cases

description

profile ID status code error code

The DME is unable to establish a

Core InternalError OutOfMemory

transaction on request due to resource

constraints.

The fabric exchange layer or lower fabric

Core fabricError a fabric error

layer fails on request and returns an error,
(e.g. fails to establish an exchange context
or make a connection).

A requested timeout, e.g. for DME-

Core Timeout N/A

View.request, is exceeded.

The DME on a publisher is unable to buffer
an update due to resource constraints.
The DME on a publisher fails to find a

InternalServer
Problem
InvalidPath

Core OutOfMemory

WDM N/A

requested path in its path table or subscriber
table.

This report will be received by the
requester either if the path requested is not
a part of the profile schema definition or the
responder is has no path table entry for the
given path.

An update request contains an out-of-date
version identifier.

WDM InvalidVersion

N/A

x. DME Attributes

The DME has number of attributes or stored parameters
50 that are used to manage and control behavior. Table 26
includes examples of DME attributes.

TABLE 26

Example DME attributes.

name

type

range

Description

aUseTcp boolean

aDefaultTimeout unsigned 16-

bit integer

true/false

0...0xffff

This attribute has a value of true if the
Protocol Engine sublayer of the DME
is expected to establish a TCP
connection with peer nodes in order
to send data management messages.
Otherwise, the attribute is false.

The default timeout for data

management protocol operations.
This timeout may be used in cases
where one is not supplied by the
requestor in a transaction.

US 9,410,712 B2

53 54
TABLE 26-continued

Example DME attributes.

name type range Description
aPeerNodeld 64-bit Node ID any The bound peer address for this DME
instance.

The value 0 means “no bound peer”.

10
xi. DME-View Request

As previously discussed, the DME-View.request primitive
is issued by the NHL to request a view or snapshot of profile
data resident on a remote node. In some embodiments, the
primitive interface includes a Destinationld, Topicld, Path-
List, Transactionld, and Timeout. Table 27 includes example
DME-View parameters.

15

TABLE 27

DME-View.request parameters

name type range description

Destinationld ~ 64-bit Node any The 64-bit Node identifier of the node from

D which the profile data view is being requested.
In some embodiments, this parameter is
optional in the case where a default binding has
been set up using the DME-Bind primitive. In
this case, if the parameter is not supplied then
the default destination is used.
In some embodiments, the Destinationld may be
0 or use a default binding of 0.

PathList a path list — A list of paths [Py . . . P,] in an agreed profile
schema that the entity issuing the primitive
assumes is resident on the remote node and for
which it wishes to receive the corresponding
data list [{Py:Xo} . . . {P,:: X, }].

Transactionld unsigned 16- 1...0xffff A token used as local reference to the

bit integer transaction set up to track this view, e.g. for
cancellation.
The value 0 is reserved to mean “undefined ID”
and may not be used in this context, in some

embodiments.
Timeout unsigned 32- 1...0xffff A time in milliseconds to wait for a response.
bit integer This parameter is optional. If a timeout is not

provided then the default timeout,
aDefaultTimeout, from the DME attributes table
may be used.

The value 0 is reserved to mean “no timeout
required” and may not be used in this context,
in some embodiments.

xii. DME-View.indication exchange layer, of a view request frame. In some embodi-
As previously discussed, a DME-View.indication primi- ments, the primitive interface may include a ResponseCtx or
tive may be issued by the DME upon arrival, via the fabric a PathList, which are defined in Table 28.

TABLE 28

DME-View.indication parameters

name type range description

ResponseCtx — any Anobject (e.g., a fabric exchange context) that contains
the information required for the
protocol engine sublayer to frame a response to
the received indication.
This object may be retained and passed back as
the ResponseCtx parameter of the
corresponding DME-View.response primitive.
PathList apath list — A list of paths [Py .. . P,] in an agreed profile
schema that the requestor assumes is resident on
the receiving node and for which the requestor
wishes to receive the corresponding data list,

[{Po:Xo} - . . {PiX,]

US 9,410,712 B2

55

xiii. DME-View.response

As previously discussed, a DME-View.response primitive
is issued by the data manager sublayer of the DME to the
protocol engine sublayer in response to the receipt, and after

56

the processing, of a DME-View.indication primitive. The
DME-View primitive interface may include ResponseCtx,
Status, and Datal.ist, such as the parameters described in
Table 29.

TABLE 29

DME-View.response parameters

name

type range description

ResponseCtx — any The value of the ResponseCtx parameter of the

Status

DataList

DME-View.indication primitive to which this is
a response.

status report any The status of the indication containing profile
identifier, status code and optional additional
information.

apath list — A data list, [{P:: X0} . . . {P,::X,,}], as described in
clause 5 where the list length, n, is the same as
the length of the path list in the DME-
View.indication frame that produced this
response and where each path P; is equal to one
and only one element of the corresponding path list.
In some embodiments, the version field of each
data list element may be supplied but is not
required.
In some embodiments, this parameter be
omitted unless the status expressed in the Status
parameter is Success or an equivalent indicating
successful processing of the corresponding
DME-View.indication primitive.

xiv. DME-View.confirm
30 Aspreviously discussed, a DME-View.confirm primitive is
issued by the data manager sublayer of the DME to the NHL.
in response to the receipt, and after the processing, of a view
response frame. In some embodiments, the primitive inter-
face includes Responderld, Status, Datal.ist, and Transac-
tionld, as discussed in Table 30.

TABLE 30

DME-View.confirm parameters

name

type range description

Responderld

Status

DataList

Transactionld

64-bit Node any The 64-bit identifier of the node from which the

D profile data view was requested.
In some embodiments, the Responderld may be
optional when a unicast default binding has
been set up using the DME-Bind primitive.

status report any The status of the request containing profile
identifier, status code and optional additional
information.

apath list — A data list, [{Pg::Xo} . . . {P,:X,,}] where the list
length, n, is the same as the length of the path
list in the DME-View.request primitive that
produced this confirmation, and where each
path P; is equal to one element of the
corresponding path list.
The version field of each data list element may
be supplied.
This parameter may be omitted unless the status
expressed in the Status parameter is Success or
an equivalent indicating a successful WDM
exchange.

unsigned 16- 1...0xffff The transaction identifier of the DME-

bit integer View.request primitive of which this is a
confirmation.
The return of this identifier here indicates that
the associated transaction may be freed and any
associated state expunged.

US 9,410,712 B2
57 58

xv. DME-Subscribe.request updates in the event that the data of interest changes. In some
As previously discussed, a DME-Subscribe.request primi- embodiments, the primitive interface may include a Destina-
tive is issued by the NHL both to request a snapshot of profile tionld, Topicld, PathList, Transactionld, and a Timeout, as
data resident on a remote node and to request subsequent defined in Table 31.
TABLE 31

DME-Subscribe.request parameters

name type range description
Destinationld ~ 64-bit Node any The 64-bit identifier of the node from which the
D profile data subscription is being requested.

This parameter is optional in the case where a
default unicast binding has been set up using the
DME-Bind primitive. In this case, if the
parameter is not supplied then the default
destination is used.

Topicld 16-bit topic any The 16-bit identifier of a topic, available on the
D publisher, to which the requestor wishes to
subscribe.

In some embodiments, the Topicld parameter or
the PathList parameter, may be omitted.

PathList a path list — A list of paths [Py . .. P,] in an agreed profile
schema that the entity issuing the primitive
assumes is resident on the remote node and for
which it wishes to subscribe.
This parameter is optional. Either the Topicld
parameter or the PathList parameter, but not
both, may be supplied.

Transactionld unsigned 16- 1...0xffff A token used for local reference to the

bit integer transaction set up to track this subscribe, e.g. for

cancellation.
The value 0 is reserved to mean “undefined ID”
and may not be used in this context in some

embodiments.
Timeout unsigned 16- 1...0xffff A time in milliseconds to wait for a response.
bit integer This parameter is optional.

The value 0 is reserved to mean “no timeout
required” and may not be used in this context in
some embodiments.

xvi. DME-Subscribe.indication
As previously discussed, a DME-Subscribe.indication
primitive is issued by the DME protocol engine sublayer upon
40 arrival, via the fabric exchange layer, of a subscribe request
frame. In some embodiments, the primitive interface may
include ResponseCtx, Topicld, and PathList, as represented
in Table 32.

TABLE 32

DME-Subscribe.indication parameters

name type range description

ResponseCtx — any An object, e.g. a fabric exchange context, that
contains the information used for the protocol
engine sublayer to frame a response to the
received indication.

This object may be retained and passed back as

the ResponseCtx parameter of the

corresponding DME-Subscribe.response primitive.
Topicld 16-bit topic any A topic identifier, known to the publisher,

identifier representing the content of the subscription.

This parameter may be present if the topic id

field is present in the corresponding subscribe

request frame.

PathList a path list — A list of paths [P, ... P,] in an agreed profile
schema that the requestor assumes is resident on
the receiving node and for which the requestor
wishes to receive the corresponding
[{Po::Xo} - . . {P,::X,,}] along with subsequent
updates if data items covered by the path list are
changed.

US 9,410,712 B2

59 60
TABLE 32-continued

DME-Subscribe.indication parameters

name type range description

This parameter may be present if the path list
field is present in the corresponding subscribe
request frame.

10
xvii. DME-Subscribe.response

As previously discussed, a DME_Subscribe.response
primitive is issued by the NHL in response to, and after
processing of, a DME-Subscribe.indication primitive. In
some embodiments, the primitive interface includes Respon-
seCtx, Status, Topicld, and Datal ist, as defined in Table 33.

TABLE 33

DME__Subscribe.response parameters

name type range description

ResponseCtx — any The value of the ResponseCtx parameter of the
DME-Subscribe.indication primitive to which
this is a response.

Status a status any The status of the attempt to subscribe.
report
Topicld unsigned 16- any A topic identifier chosen by the NHL for this
bit integer subscription.
Datal ist a data list — A data list, [{P¢::Xo} . . . {P,::X,,}], as described

above, where the list length, n, is the same as
the length of the path list in the DME-
Subscribe.indication frame that produced this
response and where each path P; is equal to one
element of the corresponding path list.

The version field of each data list element may
be supplied.

This parameter may be present if the status
expressed in the Status parameter is Success or
an equivalent indicating successful processing
of the corresponding DME-Subscribe.indication primitive.

xviii. DME-Subscribe.confirm

As previously discussed, a DME Subscribe.confirm primi-
tive is issued by the DME to the NHL to report the completion
status of a previously issued DME-Subscribe.request. In defined in Table 34.

40 Some embodiments, the primitive interface includes Respon-

derld, Status, Topicld, Datal.ist, and Transactionld, as

TABLE 34

DME _Subscribe.response parameters

name type range description
Responderld 64-bitnode any The 64-bit identifier of the node from which the
D subscription was requested.

This parameter is optional in the case where a
unicast default binding has been set up using the
DME-Bind primitive. In the case where a
broadcast default binding has been established,
the Responderld parameter may be provided.

Status a status — The status of the subscribe request containing
report profile identifier, status code and optional
additional information.
Topicld unsigned 16- any The topic identifier chosen by the DME of the
bit integer publishing device.
Datal ist a data list — A data list, [{Pg::Xo} . . . {P,:X,,}], as described

above, where the list length, n, is the same as
the length of the path list in the DME-
Subscribe.indication frame that produced this
response and where each path P; is equal to one
element of the corresponding path list.

The version field of each data list element may
be supplied.

This parameter may be present if the status
expressed in the Status parameter is Success or

61

US 9,410,712 B2
62

TABLE 34-continued

DME__Subscribe.response parameters

name type range description
an equivalent indicating successful processing
of the corresponding DME-Subscribe.indication
primitive.

Transactionld unsigned 16- 1...O0xffff The transaction identifier of the DME-

bit integer

Subscribe.request primitive of which this is a
confirmation.

The return of this identifier here indicates that
the associated transaction may be freed and any
associated state expunged.

xix. DME-Update.request

15

As previously discussed, a DME-update.request primitive
is issued by the NHL to request a change to profile data
resident on a remote node. In some embodiments, the primi-
tive interface may include a Destinationld, Datal ist, Trans-

actionld, and Timeout, as defined in Table 35.

TABLE 35

DME-Update.request parameters

name

type

range

description

Destinationld ~ 64-bit Node any

D

DataList a data list —

Transactionld unsigned 16- 1...Oxffff

bit integer

Timeout unsigned 16- 1 ... Ox{fff

bit integer

The 64-bit identifier of the publisher node on
which the data for which a change is being
requested is under management.

If the Destinationld parameter is supplied and
has a value of 0, then the resulting update
request frame may be multicast.

This parameter is optional in the case where a
default binding has been set up using the DME-
Bind primitive. In this case, if the parameter is
not supplied then the default destination may be
omitted.

A data list, [{Po::Xo} . . . {P,::X,,}], as described
above, describing both the location in the
agreed profile schema and the new values of the
data for which a change is being requested.

In some embodiments, the version field of each
data list element may be optional.

A token used for local reference to the
transaction set up to track this update (e.g. for
cancellation).

In some embodiments, the value O is reserved to
mean “undefined ID.”

A time in milliseconds to wait for a response.
In some embodiments, this parameter is
optional when the RspRequired parameter has a
value of false.

The value 0 is reserved to mean “no timeout
required.”

xx. DME-Update.indication
As previously discussed, a DME-Update.indication primi-
tive is issued by the DME upon arrival, via the fabric

exchange layer, of an update request frame. In some embodi-
ments, the primitive interface may include ResponseCtx and
DatalList, as defined in Table 36.

TABLE 36

DME-Update.indication parameters

name

range description

type

ResponseCtx

DataList

An object that contains the information for the protocol
engine sublayer to frame a response to

the received indication.

This object may be retained and passed back as

the ResponseCtx parameter of the

corresponding DME-update.response primitive.

A data list, [{P¢::Xo} . . . {P,::X,,}] describing both
the location in the agreed profile schema and, as

_ any

adatalist —

US 9,410,712 B2

63 64
TABLE 36-continued

DME-Update.indication parameters

name type range description

terminals, the new values of the data for which
a change is being requested.

XX1. DM.E-UpdaFe.response R TABLE 37-continued

As previously discussed, a DME-update.response primi-
tive is issued by the NHL in response to, and after processing DME_ Update.response parameters
of, a DME-update.indication primitive. The NHL sends a -

. . . name type range descrlptlon

response if the RspRequired parameter of the corresponding
DME-Update.indication primitive has a value of true. In 15 Status astatus any The status of the update indication
some embodiments, the primitive interface includes Respon- report containing profile identifier, status code

and optional additional information.

seCtx and Status, as defined in defined in Table 37.

TABLE 37 xxii. DME-Update.confirm
20

DME__Update.response parameters

As previously discussed, a DME-Update.confirm primi-

d 1 t . P 3
lame pe renge description tive is issued by the DME to the NHL to report the completion
ResponseCtx — any Anobject that contains the information for and status of an update transaction. In some embodiments, the

the protocol engine sublayer to frame a L. . .

response to the received indication. 25 primitive interface may include Responderld, Status, and

Transactionld, as defined in Table 38 below.
TABLE 38

DME-Update.confirm parameters

name type range description
Responderld 64-bitnode any The 64-bit identifier of the node of which the
D update was requested.

This parameter is optional in the case where a
unicast default binding has been set up using the
DME-Bind primitive. In the case where a
broadcast default binding has been established,
the Responderld parameter may be provided.
Status a status — The status of the update request containing
report profile identifier, status code and optional
additional information.
Transactionld unsigned 16- 1...O0xffff The transaction identifier of the DME-
bit integer Update.request primitive of which this is a
confirmation. The return of this identifier here
indicates that the associated transaction may be
freed and any associated state expunged.

xxiii. DME-CancelTransaction.request
As previously discussed, a DME-CancelTransaction.re-
quest primitive is issued by the NHL in order to cancel a
50 previously requested transaction. In some embodiments, the
primitive interface may include a Transactionld and Error-
Code, as defined in Table 39.

TABLE 39

DME__CancelTransaction.request parameters

name type range description

Transactionld unsigned 16- O...Oxffff The identifier of the transaction to be canceled.

bit integer A value of 0 in this context means, “cancel all
transaction”.
ErrorCode — — An implementation-specific error code to be

reported in the confirmation primitive that

results from the canceled transaction.

US 9,410,712 B2
65 66

xxiv. DME-Cancel Transaction.confirm TABLE 42

As previously discussed, a DME-CancelTransaction.con- DME_ CancelSubscription.indication parameters
firm primitive is issued by the DME to the NHL to confirm the , Tame type range description
cancellation of a transaction. In some embodiments, the Requestorld 64-bitnode any The node ID of the subscriber

L . . . D ttempting t 1
primitive interface may include a Transactionld, as defined in attetipg fo cance

a subscription.
Table 40.
TABLE 40
DME__CancelTransaction.confirm parameters

name type range description

Transactionld unsigned 16- 0...Oxffff The identifier of the canceled transaction. A
bit integer value of 0 in this context means, “all

transactions canceled”.

xxv. DME-CancelSubscription.request TABLE 42-continued
As previously discussed, a DME-CancelSubscription.re- DME_ CancelSubscription.indication parameters
25
quest transaction may be issued by the NHL of a subscriber to name type range description
cancel an existing subscription. In some embodiments, the Topicld unsigned 16- any The topic identifier of subscription
L bit int tob led.
primitive interface may include Destinationld, Topicld, I teaer O be cancele
Transactionld, Timeout, as defined in Table 41.
TABLE 41
DME__CancelSubscription.request parameters
name type range description
Destinationld ~ 64-bit node any The 64-bit identifier of the peer node for the
D subscription being canceled.
This parameter is optional and need not be
provided in the case where a default binding has
been established.
Topicld unsigned 16- any The topic identifier of subscription to be
bit integer canceled.
Transactionld — unsigned 16- 1...O0xffff A token used for local reference to the
bit integer transaction set up to track this request, e.g. for
cancellation.
The value 0 is reserved to mean “undefined ID”
and may not be used in this context in some
embodiments.
Timeout unsigned 16- 1...0xffff A time in milliseconds to wait for a response.
bit integer This parameter is optional and, in particular,
should not be provided is the RspRequired
parameter has a value of false.
The value 0 is reserved to mean “no timeout
required” and may not be used in this context in
some embodiments.
. 60 .o . .
xxvi. DME-CancelSubscription.indication xxvii. DME-CancelSubscription.confirm
As previously discussed, a DME-CancelSubscription.con-
As previously discussed, a DME-CancelSubscription.indi- firm primitive is issued by the DME of a subscriber to com-
cation transaction may be issued by the DME of a publisher municate the status of a previous attempt to cancel a subscrip-
on receipt of a cancel subscription request frame. In some 65 tion. In some embodiments, the primitive interface includes
embodiments, the primitive interface may include Request- Responderld, Topicld, Status, and Transactionld, as defined

orld and Topicld, as defined in Table 42. in Table 43.

US 9,410,712 B2

TABLE 43
DME__CancelSubscription.confirm parameters
name type range description
Responderld 64-bit node any The 64-bit identifier of the node from which the
D subscription was requested.
This parameter is optional in the case where a
unicast default binding has been set up using the
DME-Bind primitive. In the case where a
broadcast default binding has been established,
the Responderld parameter may be provided.
Topicld unsigned 16- any The topic identifier of subscription that has been
bit integer canceled.
Status a status any The status of the cancel request.
report
Transactionld unsigned 16- 1...O0xffff The token used for local reference to the now-
bit integer completed transaction.
The value 0 is reserved to mean “undefined ID”
and may not be used in this context in some
embodiments.
20
xxviii. DME-Bind.request TABLE 46
As previously discussed, a DME-Bind.request is issued by
the NHL in order to provide a default destination address for DME-BeginPublishing.confirm parameters
WDM frames. In some embodiments, the primitive interface
may include Destinationld, as defined in Table 44. o
name type range description
TABLE 44
Status a status any The status of the request.
DME-Bind.request parameters 30 report
name type range description
Destinationld ~ 64-bit Node any The 64-bit identifier of the node XXX11. DME_EndPuthhlng'r equest
D which is to be the default As previously discussed, a DME-EndPublishing.request
destination for WDM frames. 35

If the Destinationld parameter has
a value of 0, then the resulting
update request frame is to be
multicast.

xxix. DME-Bind.confirm

As previously discussed, a DME-Bind.confirm primitive is
issued by the DME to report the status of a bind request. In
some embodiments, the primitive interface includes Status, as
described in Table 45.

TABLE 45

40

primitive is issued by the NHL in order to end publishing
activities for a particular DME instance. Thereafter, arriving
DME frames may not be routed to that instance nor may
issuing DME primitives to that instance have any effect. In
some embodiments, the primitive interface has no param-
eters.

xxxiii. DME-EndPublishing.confirm

As previously discussed, a DME-EndPublishing.confirm
primitive is issued by the DME to report the status of'a request
to end publishing. In some embodiments, the primitive inter-
face includes Status, as described in Table 47.

TABLE 47

DME-Bind.confirm parameters

name type range description
Status a status any The status of the bind request.
report

xxx. DME-BeginPublishing.request

As previously discussed, a DME-BeginPublishing.request
primitive is issued by the NHIL. when it wishes to set up a
DME to act as a publisher. In some embodiments, the primi-
tive interface includes no parameters.

xxxi. DME-BeginPublishing.confirm

As previously discussed, a DME-BeginPublishing.confirm
primitive is issued by the DME to report the status of a request
to begin publishing. In some embodiments, the primitive
interface includes a Status, as described in Table 46.

50

55

60

65

DME-EndPublishing.confirm parameters

name type range description
Status a status any The status of the request.
report

xxxiv. DME-BeginSubscription.request

As previously discussed, a DME-BeginSubscription
primitive may be issued by the HNL to a DME instance that
supports subscription in order to start a particular subscrip-
tion. Thereafter, it should be able to handle DME-Sub-
scribe.indication primitives with respect to the topic identi-
fied by the Topicld parameter of the DME-
BeginSubscription.request primitive. The primitive interface
may include Topicld, Subscriberld, and PathList, as
described in Table 48.

US 9,410,712 B2

69
TABLE 48

DME-BeginSubscription.request parameters

name type range

description

Topicld
bit integer

Subscriberld 64-bit Node any
D

PathList a path list any

unsigned 16- 1 ... Ox{fff

The topic identifier to be associated with this
subscription.

The node identifier of the intended subscriber.
A value of 0 indicating “any node ID” may be
used in the case of broadcast publishing.

The list of paths, which is a sub-list of the path
list given as the PathList parameter of the
DME-BeginPublishing.request primitive, that is
used to define the content of the subscription.
In some embodiments, the PathList parameter
may be omitted.

xxxv. DME-BeginSubscription.confirm
As previously discussed, a DME-BeginSubscription.con-
firm primitive is issued by the DME to report the status of a

20

70

TABLE 51

DME-Notify.indication parameters

request to begin a subscription. In some embodiments, the

primitive may include Status, as described in Table 49.

name type

range description

25 ResponseCtx — any

TABLE 49

DME-BeginSubscription.confirm parameters

name type range

description

Status a status any

report

The status of the request. 30

xxxvi. DME-Notify.request

As previously discussed, a DME-Notify.request primitive .o pyep ior

Topicld unsigned any
16-bit
integer

adata list any

is issued by the NHL when it wishes to notify subscribers of
changes in a published data set. In some embodiments, the

primitive interface may include Topicld, Datal.ist, Transac-

An object that contains the information
required for the protocol engine
sublayer to frame a response to the
received indication.

This object may be retained and passed
back as the ResponseCtx parameter of
the corresponding DME-Notify.
response primitive.

The 16-bit topic identifier of the
subscription under which this
notification is being reported.

A data list containing changes to a
data set to which this DME instance
has a subscription.

tionld, and Timeout, as described in Table 50.

TABLE 50

DME-Notify.request parameters

name type range description
Topicld unsigned 16- any The 16-bit topic identifier of the subscription
bit integer under which this notification is being reported.
DataList a data list any A data list containing changes to the data set
under control of the DME instance to which this
primitive is issued.
Transactionld unsigned 16- 1...0xffff A token used as local reference to the
bit integer transaction set up to track this notify request,
(e.g. for cancellation).
The value 0 is reserved to mean “undefined ID.”
Timeout unsigned 32- 1...0xffff A time in milliseconds to wait for a response.

bit integer

In some embodiments, this parameter is
omitted. If a timeout is not provided then the
default timeout, aDefaultTimeout, from the
DME attributes table may be used.

The value 0 is reserved to mean “no timeout
required.”

xxxvii. DME-Notify.indication

As previously discussed, a DME-Notify.indication primi-
tive is issued by the DME of a subscriber upon arrival, via the

60

xxxviii. DME-Notify.confirm

As previously discussed, a DME-Notify.confirm primitive
is issued by the DME to the NHL to report the completion and

fabric exchange manager, of a notify request frame. The 65 status of a notify transaction. The primitive interface may

primitive interface may include ResponseCtx, Topicld, and
Datalist, as described in Table 51.

Table 52.

include Topicld, Status, and Transactionld, as defined in

US 9,410,712 B2

71
TABLE 53

72

DME_ Notify.response parameters

name type range description

Topicld unsigned 16- any The 16-bit topic identifier of the subscription
bit integer under which this notification was reported.

Status a status — The status of the notify request containing
report profile identifier, status code and optional

additional information.

Transactionld unsigned 16- 1...O0xffff The transaction identifier of the DME-

bit integer Notify.request primitive of which this is a

confirmation.

The return of this identifier here indicates that

the associated transaction will be freed and any

associated state expunged.

c. Frame Formats

A list of frames employed by WDM is provided above. In
addition to the frames described here, data management
exchanges may include status report profile frames, as previ-
ously discussed, when appropriate.

i. Fabric application header

As previously discussed, in order for a data management
profile frame to be properly recognized and handled, the
fabric application header identifies the frame as such.

1. Profile ID

In some embodiments, the profile identifier field of the
fabric application header has a value of 0x0000000B for
WDM frames.

2. Message Type

As previously discussed, the message type field of the
fabric application header may have one of the following set of
values for WDM frames.

TABLE 54

‘WDM profile message types

type message

0x00 view request

0x01 view response

0x02 subscribe request

0x03 subscribe response

0x04 cancel subscription
request

0x05 update request

0x06 notify request

0x09-0xff reserved

ii. View Request Frame

The view request frame may be sent when the requestor
wants a view of profile data under management by a pub-
lisher. In some embodiments, the view request frame 2000
has the form illustrated in FIG. 49. The path list field 2002 of
the view request frame 2000 is variable in length and extends
to the end of the frame. The path list field 2002 is an array of
paths, expressed in the TLV format and may contain at least
one path to be viewed.

iii. View Response Frame

The view response frame may be sent, via unicast only, in
response to the receipt and successful processing of a view
request frame 2004 and may have the form shown in FIG. 50.
The data list field 2006 of the view response frame 2004 is

20

25

30

40

45

50

variable in length and extends to the end of the message. The
data list field 2006 is an array of data items, expressed in the
TLV format, that corresponds to the path list field 2002 of the
view request frame 2000.

iv. View Request Status

Ifa view request frame cannot be processed successfully or
a response cannot be formulated and sent, the receiver
responds with a status report according to the status report
profile discussed previously.

v. Subscribe Request Frame

The subscribe request 2008 as illustrated in FIG. 51 may be
sent when the requestor wants both a view into the current
state of profile data resident on a publisher and subsequent
updates when the data of interest is modified that includes a
topic identifier field 2010 and a path list field 2012, as previ-
ously discussed.

1. Topic ID Field

The topic ID field 2010 of the subscribe request frame is 16
bits in length and may either contain a value of 0, indicating
“topic identifier not specified” or a non-zero value that is
unique in the sense that no two active subscriptions from a
particular subscribing node may have the same topic 1D
value.

2. Path List Field

The path list field 2012 of the subscribe request frame 2008
is variable in length and extends to the end of the frame. The
path list field is an array of paths, expressed in the TLV
format. Ifthe topic ID field 2010 has a non-zero value then the
path list field is empty. Ifthe topic ID field has a value of 0, the
path list field is non-empty and contains at least one path.

vi. Subscribe Response Frame

The subscribe response frame 2014, as illustrated in FIG.
52, includes a topic id field 2016 and a data list field 2018. The
subscribe response frame 2014 may be sent, via unicast in
response to the receipt and successful processing of a sub-
scribe request frame 2008.

1. Topic ID Field

The topic ID field 2016 of the subscribe response frame
2014 is 16 bits in length and may have the same value as the
topic ID field 2010 of the view request frame 2008 to which
the current frame is a response.

US 9,410,712 B2

73
2. Data List Field

The data list field 2018 of the subscribe response frame
2014 is variable in length and contains the most recent snap-
shot available of the data of interest as requested in the cor-
responding subscribe request frame 2008. The data list field
2018 is an array of data items, expressed in the TLV format. In
some embodiments, the data list field 2018 contains at least
one data item.

vii. Subscribe Request Status

If a subscribe request frame cannot be processed success-
fully or a response cannot be formulated and sent, then the
receiver responds with a status report, as previously dis-
cussed.

viii. Cancel Subscription Request Frame

As illustrated in FIG. 53, a cancel subscription request
frame 2020 may be sent when the requestor wishes to cancel
a previously established subscription and remove associated
state. In some embodiments, the cancel subscription request
frame 2020 includes a topic ID field 2022 of the cancel view
request frame is 16 bits in length and may be the topic ID
given in the subscribe request frame 2008 under which the
subscription being canceled was established. On receipt of a
cancel subscription request, the receiver attempts to cancel
the subscription identified in the request and remove relevant
state.

ix. Update Request Frame

As illustrated in FIG. 54, a update request frame 2024 may
be transmitted when a node wishes to make a change to data
resident on another. The update request frame 2024 includes
adatalistfield 2026 is variable in length and contains the most
recent snapshot available of a data set which may be of inter-
est to the receiver. On receipt of an update request, the
receiver attempts to disseminate the data described in the
frame. It then responds with a status report containing the
status of the attempt.

x. Notify Frame

As illustrated in FIG. 55, a notify frame 2028 may be sent
by a publisher, either by multicast or unicast, to inform sub-
scribers of changes to profile data under management. The
notify frame 2028 may include a topic identifier field 2030
and a data list field 2032.

1. The Topic Identifier Field

The topic identifier field 2030 is 16 bits in width. It may
contain the 16-bit topic identifier for the subscription on the
receiving device under which this notify request frame is
being performed.

2. The Data List Field

The data list field 2032 of the notify frame is variable in
width and may contain a data list describing changes to the
data set of interest.

xi. Profile Schema

The WDM profile, as described above, specifies complex
data structures encoded in TLV—specifically the path listand
datalist. For the following discussion, <type>:<tag>:<value>
represents TLV elements.

1. Example Path List Format

Schematically, a TLV path list has the form: <array>:WD-
MPathList: {<path>::{ ...} ...} Thatis, a path list is a
named array of paths. A TLV path from the perspective of
WDM has the form shown in Table 89.

10

15

30

35

40

45

50

TABLE 55
TLV path
<path>:
{
{
<unsigned int>:WDMPathProfileId:<integer value>
| <TLV type>:WDMPathProfileInstance:<TLV value> |
¥

| <path element> |

The data includes a collection of type <path> where the first
element is an anonymous structure containing a profile ID and
optional profile instance followed by 0 or more path elements.
In some embodiments, the form of a path element is one of:
<NULL>:<tag>: in the case where the element specifies a
structure member with a particular tag.
<integer type>: WDMPathArrayIndexSelector<integer
value> in the case where the integer value is to be used as
an array index.
<structure>: WDMPathArray ValueSelector: { <type>:
<tag>:<value>} in the case where the contained element
is to be used as a record selector.
2. Data List Format
A TLV data list has the form: <array>:WDMDataL.ist:
{<data list element> . . . }. In some embodiments, each data

list element may have a form, such as that produced in Table
56.

TABLE 56
Data list element format
<structure>::
{
<path>:WDMDataListElementPath:{...}
<unsigned 8-byte integer>:WDMDataListElementVersion:<integer
value>
<type>WDMDataListElementData:<value>
¥

The first element of the form is the path to the data element,
the second is its 64-bit version as assigned by the sender and
the third is the data element itself

When the path component of a data list element is the “top
level” path for the given profile (e.g., identifies the profile and
optional instance but no following path elements naming
specific data items), the following data component may be a
structure containing elements of the profile schema. These
elements may be identified by fully qualified tags containing
a profile identifier.

A profile schema implementation over WDM may support
data access (e.g. view or update) employing the top level path
as just described as well as the complete set of “next level”
paths (e.g., paths containing a single additional path element
specifying an element of the top level structure).

3. Tag Dictionary

The list of tags used to encode data management frames
within the data management profile is shown in Table 57.

US 9,410,712 B2

TABLE 57
‘WDM tag values
name value description
WDMPathList 100 The element is a path list.
‘WDMPathProfile 101 The element is a structure that is used to
start a path and contains the profile
information in light of which the tags in the
path are to be interpreted.
WDMPathProfileld 102 The element is a profile ID that begins a
TLV path.
WDMPathProfileInstance 103 The element is a profile instance, which

WDMPathArrayIndexSelector

WDMPathArrayValueSelector

may follow the profile ID in a TLV path.
Note that a node may or may not have
multiple instances of a particular profile
and, in the case where there is only one,
this element may be omitted.

104 The path element corresponds to an array in
the schema and the contained integer
element is to be used as an index into that
array.

105 The path element corresponds to an array in
the schema and the contained TLV element
is intended to match a contained array

76

element.

WDMDataList 200 The element is a data list.
WDMDatalistElementPath 201 The element is the path component of a
data list element.
WDMDataListElementVersion 202 The element is the version component of a
data list element.
WMDataListElementData 203 The element is a container for the data

portion of a data list element.

4. Profile Status Codes
The profile status codes for data management are shown in
Table 58.

TABLE 58

30

request code 3008 which then sends a relevant request to
marshalling code 3010 that marshals the target data to be
viewed. The marshalling code 3010 returns the marshaled

Status codes for the data management profile

name value description

CancelSuccess 0x0001 A subscription was successfully canceled.

BadPath 0x0012 A path for the path list or data list of a request was ill-
formed.

InvalidPath 0x0013 A path from the path list of a view or update request
frame did not match the node-resident schema of the
responder.

UnknownTopic 0x0014 The topic ID given in a cancel subscription request did not

match any view extant on the receiving node.

IllegalReadRequest 0x0015 The node making a request to read a particular data item

does not have permission to do so.

IllegalWriteRequest 0x0016 The node making a request to write a particular data item

does not have permission to do so.
InvalidVersion

0x0017 The version check on an update request failed.

d. Example Exchange Between Devices

FIG. 56 illustrates an embodiment of data management
communications between devices as further illustration of the
foregoing discussion. A message 3000 (e.g., in general mes-
sage format) is sent through a smart network and/or fabric to
areceiving device 3002. The message 3000 is decoded by the
device 3002 using profile ID code 3004 included in the mes-
sage 3000. Wherein the device 3002 uses the profile ID code
3004 to determine that the message 3000 is a WDM message.
The device 3002 sends the decoded payload of the message
3000 to its WDM interpreter 3006 to handle the WDM func-
tions. The WDM interpreter 3006 interprets the code pertain-
ing to various functions and submits the code to proper code
functions for the device. For example, if the message contains
a view request, the WDM interpreter 3006 determines that a
view request is present and sends the view request to view

55

60

65

target data to the view request code 3008, which sends the
marshaled data to form response code 3012. The form
response code 3012 forms a response and sends the response
to the requesting device 3014. In some embodiments, the
requesting device 3014 receives the response via a WDM
client 3016 that sends the response to the application layer
3018.

FIG. 57 illustrates a more detailed illustration of the
devices 3002 and 3014 of FIG. 56. As illustrated, the devices
3002 and 3014 communicate using fabric encoded text via a
fabric exchange communication that is managed by fabric
exchange managers 3020. Furthermore, in some embodi-
ments, the devices 3002 and 3014 have WDM listeners 3022
that listen for unexpected messages that are addressed to or
relevant to their respective devices. For example, in some
embodiments, any message not sent in response to a request

US 9,410,712 B2

77

may be anunexpected message. In some embodiments, one or
more devices may also include a client notifier 3024 that may
be used to notify clients of the detected unexpected messages,
such as Client DME_1 3026 and Client DME_2 3028 each
residing within respective client applications 3030 and 3032.

As discussed above, the device 3002 may request to sub-
scribe to data from device 3014 using a subscribe request
3032 that indicates a topic (e.g., pathlist or profile field) to
which the subscription applies. The device 3002 also stores a
list of subscriptions in client notifier 3024. Uponreceiving the
subscription request 3032 via the WDM listener 3022, the
device 3014 stores the device 3002 in its subscription table
along with the topic to be subscribed. In addition to saving the
device 3002 in the subscription table 3034, the device 3014
returns a response message 3036 that includes the current
data described the topic requested. In some embodiments, the
response message 3036 may include the publisherID to indi-
cate that the device 3014 is the publishing device sending the
data. Also, in certain embodiments, the response may include
atopic that pertains to the subscription such that all messages
sent by the client 3014 relating to the subscription will have a
common topic.

Moreover, in some embodiments, the device 3002 may
request and/or receive additional information, such as a view
request 3038 and 3040 via the WEM 3020 or the WDM
listener 3022. Even though additional communications have
occurred, the device 3014 will update the device 3002 with
changes to the subscribed-to data with a notify message 3042.
In some embodiments, the notify message 3042 includes the
topic, the data, the publisherID, and/or a change in the data.

e. Multiple Publishers

FIG. 58 illustrates a concept of multiple publishers in a
fabric and “ownership” of the data that belongs to that pub-
lisher. FIG. 58 includes a fabric 4000 that contains a heatlink
device 4002, two thermostats 4004 and 4006, a hazard detec-
tor 4008, and a mobile device 4010. Each device may be able
to determine information that the device owns and shares with
other devices using the publishing steps discussed above. For
example, the heatlink device 4002 may include a manual
override for a radiator valve. The heatlink device 4002 may
“own” the data, and the thermostat 4004 may subscribe to this
data. As previously discussed, the heatlink device 4002 may
store the thermostat 4002 in its lists of subscribed devices, so
that whenever the manual override value changes, the
heatlink device 4002 may send an update to the thermostat
4004. Similarly, the thermostat 4004 may include data, such
as a sensed temperature, a heat on/off value, and remote
sensing data. The heatlink device 4002 may subscribe to the
heat on/off value so that the heatlink device 4002 will be
updated when thermostat 4004 determines that the heat
should be switched on or off. The hazard detector 4008 may
include data related to occupancy and/or temperature of a
room in which it is installed. Moreover, the thermostat 4004
may subscribe to this information. Finally, the mobile device
4010 may subscribe to view any data on any node through the
thermostat 4004. In other words, in the current embodiment,
the mobile device 4010 may connect to the other devices
through the thermostat 4004. Thus, in certain embodiments, a
device that only directly connects to a single other device in
the fabric may connect to other devices in the fabric through
that device and perform the data management techniques
discussed above. Moreover, in light of the foregoing discus-
sion, multiple devices in a network may publish data as a
publisher. Furthermore, multiple devices may subscribe to
data from a single device, and each device may be a sub-
scriber for some data and a publisher for other data.

10

15

20

25

30

35

40

45

50

55

60

78

The specific embodiments described above have been
shown by way of example, and it should be understood that
these embodiments may be susceptible to various modifica-
tions and alternative forms. It should be further understood
that the claims are not intended to be limited to the particular
forms disclosed, but rather to cover all modifications, equiva-
lents, and alternatives falling within the spirit and scope of
this disclosure.

The invention claimed is:

1. A method for controlling data remotely comprising:

connecting to a remote device within a fabric of smart

devices from a local smart device within the fabric of
smart devices, wherein the remote device stores data
locally, wherein the remote device comprises a smart
device having at least one sensor; and

remotely controlling the data stored in the remote device

from the local smart device connected to the fabric by
transmitting a message to the remote device, wherein the
transmitted message includes a profile identifier that
causes a data management entity of the remote device to
perform an indicated data management action, wherein
the profile identifier identifies a data management pro-
file, and the message includes a command tag that indi-
cates the data management action to be performed, and
wherein the data management action comprises:

a subscribe action configured to cause the remote device
to store an indicator of the local smart device as a
subscriber to the data, and the indicator of the local
smart device as the subscriber is configured to cause
the remote device to send the data to the local smart
device; wherein the subscribe action is configured to
cause the remote device to send the data to the local
smart device when:
the remote device determines that the data has

changed from a state last sent to the local smart
device; and
an interval for sending the data has expired;

a view action configured to send the data to be viewed
that is stored locally on the remote device to the local
smart device; or

an update action configured to update the data stored
locally to a value sent by the local smart device.

2. The method of claim 1, wherein the data comprises a
state of the remote device, wherein the remote device com-
prises a radiator control valve and the state of the remote
device comprises a heat state of a radiator controlled by the
radiator control valve, and wherein the view action is config-
ured to send the heat state of the radiator to the local smart
device, and the update action is configured to update the heat
state of the radiator.

3. The method of claim 1, wherein the data stored locally
on the remote device comprises data stored using a second
profile for the fabric network that is different than the data
management profile identified in the profile identifier of the
message, wherein the second profile comprises a core profile,
a software update profile, and a heating-ventilating-and-air-
conditioning (HVAC) profile.

4. A non-transitory, computer-readable medium having
instructions stored thereon, wherein the instructions when
executed are configured to cause a processor to:

connect to a remote device within a fabric of smart devices

from a local smart device within the fabric of smart

devices, wherein the remote device stores data locally,
wherein the remote device comprises a smart device
having at least one sensor; and

remotely control the data stored in the remote device from

the local smart device connected to the fabric by trans-

US 9,410,712 B2

79

mitting a message to the remote device, wherein the
transmitted message includes a profile identifier that
causes a data management entity of the remote device to
perform an indicated data management action, wherein
the profile identifier identifies a data management pro-
file, and the message includes a command tag that indi-
cates the data management action to be performed, and
wherein the data management action comprises:

a subscribe action configured to cause the remote device
to store an indicator of the local smart device as a
subscriber to the data, and the indicator of the local
smart device as the subscriber is configured to cause
the remote device to send the data to the local smart
device; wherein the subscribe action is configured to
cause the remote device to send the data to the local
smart device when:
the remote device determines that the data has

changed from a state last sent to the local smart
device; and
an interval for sending the data has expired;

a view action configured to send the data to be viewed
that is stored locally on the remote device to the local
smart device; or

an update action configured to update the data stored
locally to a value sent by the local smart device, and
the data comprises a state of the remote device.

5. The non-transitory, computer-readable medium of claim

4, wherein the instructions when executed are configured to
cause the processor to peer publish the data to a subscribing
device in the fabric by binding the data to the local smart
device so that any requests to modify the data are sent to a
node corresponding to a subscribing device such that the
subscribing device receives information about the data that is
stored locally on the remote device even when requests to
modify the data do not include an encoded destination
address for the local smart device when the local smart device
is a subscribing device.

6. The non-transitory, computer-readably medium of claim

5, wherein the instructions are configured to cause the pro-
cessor to:

receive the data based on the binding; and publish the data
to connected devices in the fabric that are connected to
the local smart device, wherein the instructions are con-
figured to cause the processor to determine that the data
pertains to the connected devices.

7. The non-transitory, computer-readable medium of claim

4, wherein the instructions are configured to cause the local
smart device to receive a filtered version of the data after the
remote device has determined whether the local smart device
has a current version of a portion of the data, wherein the
received filtered version of the data comprises the data with
the portion of the data omitted.

8. The non-transitory, computer-readable medium of claim

4, wherein the instructions when executed are configured to
cause the processor to broadcast publish the bind the data to
be multicast when a bind request includes a multicast value
that indicates that the data is to be multicast instead of unicast
to a specific device so that any requests to modify the data are
bound to connected nodes so that devices in the fabric receive
information about the data that is stored locally on the remote
device as a multicast.

9. The non-transitory, computer-readable medium of claim

4, wherein the transmitted message comprises:

a path list profile identifier that identifies a profile within
which the data is located; a version for the data; and the
path list that locates a location of the data within the
profile.

10

15

20

25

30

35

40

45

50

55

60

65

80

10. An electronic device comprising:

one or more network interfaces configured to connect the

electronic device to a fabric of smart devices;

memory;

a processor configured to:

connect to a remote device within the fabric of smart
devices from a local smart device within the fabric of
smart devices, wherein the remote device stores data
locally, wherein the remote device comprises a smart
device having at least one sensor; and

remotely control the data stored in the remote device
from the local smart device connected to the fabric by
transmitting a message to the remote device, wherein
the transmitted message includes a profile identifier
that causes a data management entity of the remote
device to perform an indicated data management
action, wherein the profile identifier identifies a data
management profile, and the message includes a com-
mand tag that indicates the data management action to
be performed, and wherein the data management
action comprises;

a subscribe action configured to cause the remote
deviceto store an indicator of the local smart device
as a subscriber to the data, and the indicator of the
local smart device as the subscriber is configured to
cause the remote device to send the data to the local
smart device; wherein the subscribe action is con-
figured to cause the remote device to send the data
to the local smart device when:
the remote device determines that the data has

changed from a state last sent to the local smart
device; and
an interval for sending the data has expired;
aview action configured to send the data to be viewed
that is stored locally on the remote device to the
local smart device; or

an update action configured to update the data stored
locally to a value sent by the local smart device.

11. The electronic device of claim 10, wherein the elec-
tronic device comprises a data management entity that com-
municates with the data management entity of the remote
device through the fabric, wherein the data management
entity of the electronic device comprises: an upper sublayer
data manager that manages and tracks data access; and a
lower sublayer protocol engine that manages communication
formats.

12. The electronic device of claim 11, wherein the upper
sublayer data manager is configured to: maintain an internal
model for the data; provide access to data based on a set of
predefined paths established by a profile definition; track
changes to the data; and resolve conflicts that may arise
between multiple updaters of the data set.

13. The electronic device of claim 11, wherein the lower
sublayer protocol engine is configured to: bind requests to a
particular node or remote service endpoint; maintain transac-
tions for the data management entity to local smart data
management entities of connected devices in the fabric;
encode communications a predefined format; and interact
with a fabric exchange manager to facilitate communication
with the local smart data management entities of the con-
nected devices.

14. The electronic device of claim 10, wherein the proces-
sor is configured to: establish a connection to a indirect con-
nection device, wherein the indirect connection device does
not directly communicate to the remote device, wherein send-
ing the transmitted message comprises receiving the trans-
mitted message from the indirect connection device; send

US 9,410,712 B2

81

received data designating the indirect connection device as a
destination to the indirect connection device.
15. The electronic device of claim 14, wherein the indirect
connection device comprises:
a non-fabric device that is not directly connected to the
fabric; or
asingle connection device on the fabric that connects to the
fabric or a local area network that corresponds to the
fabric, wherein the single connection device connects
only to the fabric or the local area network through the
electronic device as a gateway to the fabric or the local
area network.
16. The electronic device of claim 10 wherein the processor
is configured to:
receive, through the one or more network interfaces, a
received message with the profile identifier that causes a
data management entity of the electronic device to per-
form a received indicated data management action for

5

10

15

82

local data stored in the memory; and performing the
receiving indicated data management action on the local
data.
17. The electronic device of claim 16, wherein the proces-
sor is configured to:
receive a first request to update the local data from a first
device in the fabric;
update the local data as a first update using the first request;
during the first update, receive a second request to update
the local data from a second device in the fabric;
update the local data as a second update after the first
update has completed;
merging the local data with the first and second updates
after the first and second updates have completed; and
sending the merged local data as an outgoing update to the
first and second devices.
18. The electronic device of claim 10, wherein the locally
stored data comprises sensor data from the at least one sensor.

#* #* #* #* #*

